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ABSTRACT

Objective(s): Hispidulin, a naturally occurring flavonoid with neuroprotective and anticancer
properties, has shown therapeutic potential for the treatment of metabolic disorders, including
diabetes mellitus. This study was designed to explore the anti-diabetic efficacy of hispidulin by
examining its role in regulating glycemic markers, insulin responsiveness, oxidative stress, and the
inflammatory response, and by evaluating transcriptional profiling of pivotal genes involved in the
PI3K/AKT signaling cascade.

Materials and Methods: Experimental induction of type 2 diabetes was achieved using a high-fat diet
regimen, followed by intraperitoneal administration of nicotinamide 110 mg/kg and streptozotocin
55 mg/kg. Following diabetes induction, rats were treated with hispidulin (10-20 mg/kg orally/day).
Over 28 days, various parameters were assessed, including Fasting blood glucose, serum glucose,
serum insulin, HOMA-IR, HOMA-B, QUICKI, CISI, oxidative stress markers (TAC, TOS, TBRAS, SOD,
CAT, NO), and inflammatory cytokines (IL-6, TNF-a, CRP, NFkB). Gene expression levels of PI3K,
AKT, mTOR, IRS-1, GSK-3B, and GLUT-4 were determined via qRT-PCR.

Results: Hispidulin treatment significantly (P<0.001) enhanced glycemic regulation and insulin
sensitivity, as reflected by decreased fasting blood glucose levels and improved insulin indices. It
favorably modulated oxidative stress markers and reduced the pro-inflammatory cytokines. Gene
expression analysis indicated up-regulation of PI3K, AKT, mTOR, IRS-1, and GLUT-4, with down-
regulation of GSK-3B, suggesting up-regulation of the PI3K/AKT signaling cascade.

Conclusion: Hispidulin exhibits potent antidiabetic properties by improving insulin sensitivity,
reducing oxidative stress and inflammation, and modulating key genes in the PI3K/AKT pathway.
These findings suggest hispidulin as a therapeutic agent for managing type 2 diabetes mellitus.
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Introduction

The rising global incidence of type 2 diabetes mellitus
(T2DM) has become a significant public health concern,
currently affecting more than 460 million individuals
worldwide (1, 2). T2DM is a complex, multifactorial
metabolic disorder marked by persistent hyperglycemia,
insulin resistance (IR), and progressive decline in pancreatic
B-cell functional capacity (3). In addition to impaired
glucose metabolism, oxidative stress and a persistent low-
grade inflammatory response play pivotal roles in the onset
and progression of T2DM, which is marked by a gradual
decline in pancreatic B-cell function and exacerbates
peripheral insulin resistance, ultimately leading to multi-
organ dysfunction (4).

One of the critical contributors to diabetic pathogenesis
is oxidative stress, arising from the unnecessary generation

of reactive oxygen species (ROS) and the correct bonding
decline of the anti-oxidant defense mechanism (5, 6).
This redox imbalance impairs insulin signaling pathways,
disrupts mitochondrial function, and contributes to beta
cell apoptosis (7). At the same time, pro-inflammatory
cytokines, including interleukin-6 (IL-6) and tumor necrosis
factor-alpha (TNF-a), exacerbate insulin resistance and
impaired glucose homeostasis, forming a vicious cycle that
sustains the diabetic state (8, 9). Together, these alterations
accumulate in a cycle of metabolic impairment, and
searching for effective anti-oxidant and anti-inflammatory
interactions is critically important (10, 11).

Despite the availability of several anti-diabetic drugs,
current treatment regimens often fail to address the
multifaceted nature of T2DM comprehensively and are
frequently associated with undesirable side effects (12,

*Corresponding author: Wafa Majeed. Lecturer, Department of Pharmacy, Faculty of Health and Pharmaceutical Sciences,University of Agriculture, Faisalabad,

Pakistan. Email: wafa.majeed@uaf.edu.pk

© 2026. This work is openly licensed via CC BY 4.0.
@ '® This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses),
BY NC

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.



https://ijbms.mums.ac.ir/
https://dx.doi.org/10.22038/ijbms.2025.88589.19136
https://creativecommons.org/licenses/by-nc/4.0/legalcode.en

Hispidulin regulates PI3K/AKT/mTOR in diabetic models IJ

13). This has prompted a growing interest in identifying
safer, naturally derived compounds with multi-targeted
therapeutic potential (14). Recent therapeutic strategies
have focused on natural compounds with multi-targeted
actions, especially those capable of mitigating oxidative and
inflammatory stress while improving glycemic parameters
(15). These natural compounds and plant-derived bioactives
have attracted considerable attention for their potential
in motivating key metabolic pathways with minimal
side effects (16, 17). Hispidulin, naturally occurring as a
bioactive flavonoid, found in diverse medicinal plants in
the Mediterranean diet such as Salvia officinalis, Artemisia
species, and Eriocaulon buergerianum, has shown promising
pharmacological properties (18). It possesses notable anti-
inflammatory (19), neuroprotective (20), and anticancer
activities (21).

T2DM involves complex disruptions in insulin signaling,
oxidative stress, and inflammation. The PI3K/AKT
signaling pathway is essential for controlling glucose uptake
and supporting cell survival (22). Dysregulation of the
PI3K/AKT signaling pathway contributes to IR in hepatic
and skeletal muscle tissues and facilitates B-cell apoptosis
(23). Hispidulin, a flavone with known anti-inflammatory
and anti-oxidant properties, has been shown to influence
upstream modulators like SIRT1 (9). This study investigates
the potential of hispidulin to restore PI3K/AKT signaling in
an HFD-STZ-induced diabetic rat model, aiming to improve
glycemic control and mitigate oxidative and inflammatory
damage.

Enzymatic assays

The inhibitory effects of hispidulin on a-amylase
and glucosidase activities were assessed using modified
dinitrosalicylic acid (DNS) and p-nitrophenyl-a-D-
glucopyranoside (pNPG) assays. For the alpha-amylase
assay, the enzyme (0.26 uM) mixtures were pre-incubated
with different concentrations of hispidulin in phosphate-
buffered saline (PBS) at pH 6.9, maintained at 37 °C for 15
min to allow adequate interaction, followed by the addition
of soluble starch and further incubation for 10 min. The
reaction was terminated with the DNS reagent, heated to
100 °C for 10 min, cooled, and the absorbance was measured
at 530 nm (24). For the alpha-glucosidase assay, the enzyme
(0.26 pm) was incubated with various concentrations of
hispidulin in 0.1 M sodium phosphate bufter (SPB) (pH
6.8) at 37 °C for 2 hr, followed by the addition of 0.30 pmole
pNPG, and absorbance was recorded at 405 nm (25). In
both assays, the IC50 values were determined, with acarbose
used as positive control.

Materials and Methods
Chemicals

Hispidulin (298% purity), metformin hydrochloride,
streptozotocin (STZ), and nicotinamide were procured
from Sigma-Aldrich (USA). All chemicals used were of
analytical grade, and freshly prepared solutions were used
as required.

Experimental animal

The experimental study involved 40 male Wistar rats,
housed in the animal facility. Male rats were selected for their
greater tendency to develop insulin resistance, a condition
typically characterized by reduced insulin secretion and
diminished pancreatic beta cell mass, compared to females.
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The rats were maintained in a regulated research lab with
a 20 to 26 °C temperature range, relative humidity of 50 to
55% and a 12-hr light/dark cycle. Before the trial began,
all animals underwent a 2-week acclimatization period to
ensure proper adaptation to the laboratory environment.

Diabetes induction and experimental design

To induce T2DM, all rats, except the normal control
group, were initially fed an HFD for 4 weeks to promote
insulin resistance. Following the HFD regimen, animals
received a single oral dose of nicotinamide (NA) at 110 mg/kg
body weight, administered 15 min before streptozotocin. To
induce partial pancreatic -cell dysfunction, streptozotocin
(55 mg/kg) was administered in 0.1 M sodium citrate buffer
(pH 4.5) immediately before administration as described
by (26). This NA-STZ combination effectively replicates the
key pathophysiological features of T2DM, encompassing
both IR and impaired insulin secretion.

Seven days after STZ administration, fasting blood
glucose levels were assessed via tail vein sampling. Rats
with FBG levels exceeding 300 mg/dL were classified as
diabetic and subsequently included in the experimental
protocol. These diabetic rats were allocated into five groups
(n=8), ensuring unbiased distribution and experimental
consistency. The study design consisted of the following
experimental groups.

« Group I (Normal Control, NC): Healthy rats receiving a
standard diet and no treatment.

« Group II (Diabetic Control, DC): Diabetic rats received
streptozotocin (STZ) alone.

o Group III (Metformin-treated group, Met.): HFD/STZ-N
treated rats with metformin at 250 mg/kg body weight,
orally.

o Group IV (Hispidulin-treated group I, LD): HFD/STZ-N
treated rats with hispidulin at 10 mg/kg body weight, orally.
« Group V (Hispidulin-treated group II, HD): HFD/STZ-N
treated rats with hispidulin at 20 mg/kg body weight, orally.

Serum sampling and tissue sampling

Following the completion of the experimental period,
the rats were placed on an overnight fast and lightly
anesthetized for blood collection from the retro-orbital
plexus. The collected samples were left to clot at ambient
room temperature and centrifuged at 3000 RPM for 15 min
to obtain serum, which was stored at -80 °C for subsequent
biochemical analysis. Following blood collections, animals
were sacrificed, and the pancreas was carefully excised,
rinsed with ice-cold saline, and divided into portions. One
Part of the pancreas was fixed in 10% neutral buffered
formalin for histological analysis, while the remaining tissue
was stored in tizzle reagent at -80 °C for gene expression
analysis.

Measurement of fasting blood glucose (FBG) and oral
glucose tolerance test (OGTT) in diabetic rats

All experimental animals were fasted for six hours in
the morning, from 7:00 AM to 1:00 PM, prior to sample
collection. FBG was monitored weekly via tail vein sampling
throughout the study. To assess glucose tolerance, an OGTT
was conducted following the method described by (27),
with slight modifications. After a six-hour fast, rats received
the hispidulin orally. 30 min later, a glucose solution (2 mg/
kg BW.t.) was administered by oral gavage. Blood glucose
levels were recorded at baseline (0 min) and subsequently
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Table 1. Primer sequences used for quantitative real-time PCR (qRT-PCR) analysis of PI3K/AKT/mTOR pathway related genes in the rat model

Genes Primer Type Sequence (5'-3") NM number

PI3K (Phosphoinositide 3-kinase) Forward CGAGAGTACGCTGTAGGCTG >NM_053481.2
Reverse AGAAACTGGCCAATCCTCCG

AKT (Protein kinase B) Forward GAAGGAGGTCATCGTTGCCA >NM_033230.3
Reverse GTTCTCCAGCTTGAGGTCCC

mTOR (Mammalian target of rapamycin) Forward AATCGTGGTGGCTCTTGGAG >NM_019906.2
Reverse TTTCACGATCGGAGGCAACA

IRS-1 (Insulin receptor substrate-1) Forward TATCTGCATGGGTGGCAAGG >NM_012969.2
Reverse GGTAGCACCTGGGATGTAGC

GSK-3B (Glycogen synthase kinase-3 beta) Forward GGGACAGTGGTGTGGATCAG >NM_032080.1
Reverse AAGCGGCGTTATTGGTCTGT

GLUT-4 (Glucose Transporter-4) Forward CTCTCCGGTTCCTTGGGTTG >NM_012751.2
Reverse CAAGGACCAGTGTCCCAGTC

B-actin (Housekeeping gene) Forward CTTCCAGCCTTCCTTCCTGG NM_031144.3
Reverse AATGCCTGGGTACATGGTGG

at 30-, 60-, 120-, and 180-min post-glucose administration.

Serum biochemical analysis
Measurement of glycemic markers and insulin resistance
Serum glucose levels were assessed using an assay
kit, and insulin levels were quantified using ELISA kits
from Elabscience (USA) (28). IR was evaluated using
the homeostasis model assessment of insulin resistance
(HOMA-IR) (29), and B-cell function was assessed through
the Homeostasis Model Assessment of P-cell function
(HOMA-B) (30). Additionally, PB-cell performance and
insulin sensitivity were further analyzed using the Composite
insulin sensitivity index (CISI) and the Quantitative insulin
sensitivity check index (QUICKI), following established
protocols (31-34).

Determination of inflammatory cytokines and mediators
The concentration TNF-a, IL-6, CRP, and NF-kB) were
determined using ELISA kits procured from Elabscience (USA).

Oxidant and anti-oxidant markers

Total anti-oxidant capacity (TAC) and total oxidant
status (TOS) were measured by using colorimetric assay kits
(35). Thiobarbituric acid reactive substances (TBRAS) (36),
superoxide dismutase (SOD), catalase (CAT), and nitric
oxide (NO) levels were measured using spectrophotometric
and ELISA kits from Elabscience (USA) (37).

Gene expression analysis (PI3K/AKT pathway)

Total RNA was isolated from the samples using
the standard Trizol reagent extraction method. The
integrity and purity of the extracted RNA were verified
spectrophotometrically. Complementary DNA (cDNA)
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was then synthesized from the isolated total RNA using a
commercial reverse transcription kit. QRT-PCR was then
conducted employing SYBR Green master mix on an
Applied Biosystems thermal cycler. The primer sequences
used for the amplification of PI3K, AKT, mTOR, GLUT-4,
IRS1, and GSK-3p are listed in Table 1. B-Actin was used as
an internal control, and relative mRNA expression of target
genes was quantified using the 2-AACt method (38, 39).

Statistical analysis

Data were presented as mean + SEM and analyzed using
one-way and two-way ANOVA, followed by Tukey’s multiple
comparison test in GraphPad Prism; differences were
considered statistically significant at P<0.01 and P<0.001.

Results
Enzymatic assays

The inhibitory activity of hispidulin against carbohydrate-
hydrolyzing enzymes was assessed using in vitro assays.
Hispidulin demonstrated dose-dependent inhibition of
both alpha-amylase and alpha-glucosidase enzymes. The
IC,, value of hispidulin for alpha amylase was determined
to be 4.44 puM, which was slightly higher than that of the
reduction observed with the standard drug acarbose, 3.0
uM, indicating comparable potency. In the case of alpha-
glucosidase, hispidulin exhibited an IC, of 16.70 uM, which
was notably lower than that of acarbose 25.0 uM, suggesting
a strong inhibitory effect, as shown in Figure 1.

Assessment of fasting blood glucose (FBG) and oral glucose
tolerance test (OGTT) in diabetic rats

Diabetic rats exhibited a persistent and significant
elevation in FBG levels throughout the experimental
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Figure 1. Inhibitory activity of hispidulin against (A) alpha-amylase and (B) alpha-glucosidase enzymes in mice
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Figure 2. Measurement of (A) rat fasting blood glucose, (B) Oral glucose tolerance test, and (C) area under the curve (AUC)

period in contrast to NC (P<0.001). However, hispidulin
treatment showed a marked (P<0.001) reduction in FBG
levels starting from the second week, with highly significant
differences observed by the end of the trial (P<0.001).
During OGTT, diabetic control rats exhibited prolonged
hyperglycemia, with significantly higher glucose levels at
all time points compared with the NC group (P<0.001).
In contrast, hispidulin-treated groups exhibited enhanced
glucose tolerance, as indicated by a marked decrease in
blood glucose level at 60, 120, and 180 min post-glucose load
(P<0.001). The AUC was significantly reduced (P<0.001)
in both hispidulin-treated groups in a dose-dependent
manner, confirming hispidulin’s glucose-lowering potential.
Statistical analysis was performed using one-way ANOVA
followed by Tukey’s post hoc test (Figure 2).

Serum biochemical analysis
Measurement of glycemic markers and insulin resistance
Rats subjected to the high-fat diet/streptozotocin (HFD/
STZ) protocol demonstrated a marked elevation in serum
glucose concentration (P<0.001), along with a marked
decline in serum insulin concentrations (P<0.001) in
comparison with the NC group. Hispidulin administration
at 10 and 20 mg/kg resulted in a significant (P<0.001)
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decrease in serum glucose levels, accompanied by a marked
improvement in serum insulin concentrations. Evaluation
of IR through the HOMA-IR demonstrated a significant
(P<0.001) reduction in HOMA-IR values in the hispidulin-
treated group in a dose-dependent pattern. Furthermore,
the HOMA- index, a representative marker of pancreatic
B-cell functional activity, was significantly increased
(P<0.01) following hispidulin administration, suggesting
enhanced {-cell activity. In addition, QUICKI and CISI
were notably improved (P<0.001) in the hispidulin-treated
groups, as shown in Figure 3.

Measurement of inflammatory cytokines and mediators

Persistent low-grade inflammation is the key
pathological factor in the onset and progression of DM.
In the current study, rats with streptozotocin-induced
diabetes demonstrated a highly significant increase
(P<0.001) in circulating levels of pro-inflammatory
markers, including TNF-a, IL-6, CRP, and NF-kB, when
compared to NC. Hispidulin administration at doses of 10
and 20 mg/kg markedly reduced these elevations in a dose-
responsive reduction (P<0.001), suggesting its strong anti-
inflammatory efficacy in T2DM (Figure 4).
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Figure 3. Bar graph showing serum levels of (A) glucose, (B) insulin, (C) Homeostatic Model Assessment of Insulin Resistance (HOMA-IR), (D) Homeostatic
Model Assessment of B-cell Function (HOMA-B), (E) Calculated Insulin Sensitivity Index (CISI), and (F) Quantitative Insulin Sensitivity Check Index
(QUICKI) in Group I (Normal Control, NC), Group II (Diabetic Control, DC), Group III (Metformin-treated, Met.), Group IV (Hispidulin low dose, LD),

and Group V (Hispidulin high dose, HD) rats

Data are expressed as mean + SEM (n=8). Statistical analysis was performed by using one-way ANOVA followed by Tukey’s post hoc test. ### P<0.001 vs normal control, ** P<0.01,

**P<0.001 vs diabetic control.
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(TNF-a), (B) Interleukin-6 (IL-6), (C) C-Reactive Protein (CRP), and (D)

Nuclear Factor kappa B (NF-xB) in Group I (Normal Control, NC), Group II (Diabetic Control, DC), Group III (Metformin-treated, Met.), Group IV

(Hispidulin low dose, LD), and Group V (Hispidulin high dose, HD) rats

Statistical analysis was performed by using one-way ANOVA followed by Tukey’s post hoc test. ### P<0.001 vs normal control, ** P<0.01, ***P<0.001 vs diabetic control

Measurement of oxidant and anti-oxidant markers in diabetic rats

Induction with STZ caused a significant upsurge in
oxidative stress markers, as evidenced by a significant
elevation in lipid peroxidation levels, measured as
thiobarbituric  acid reactive substances (TBARS;
5.58+0.32 nmol/mg protein), compared with NC. This
was accompanied by a significant (P<0.001) depletion of
endogenous anti-oxidant defenses, including SOD, CAD,
and NO levels, along with a reduced total anti-oxidant
capacity (TAC; 1.1+0.10 mmol Trolox equi/l) and an
increase in total oxidant status (TOS; 3.6+0.21 pmol H,O,
equi./l), compared to the NC group.

Hispidulin administration at doses of 10 and 20 mg/kg
markedly (P<0.001) decreased MDA levels (3.06+0.19 and
2.66+0.30 nmol/mg protein), correspondingly, indicating
attenuation of lipid peroxidation. Concurrently, a substantial
restoration of anti-oxidant markers. Hispidulin significantly
increases SOD (LD: 4.75+0.31; HD: 6.05+0.22 U/mg protein),
CAT (LD: 37.6+2.09; HD: 47.01£2.10 U/mg protein), and NO
levels (LD: 18.5 U/mg protein0.12; HD: 21.6+0.95 pmol/l)
with reference to the DC group (P<0.001). Moreover, TAC
levels were markedly increased in the HD group (2.41+0.14
mmol Trolox equi./l; P<0.001), approaching near-normal
values, while TOS levels were significantly lowered (HD:
1.45+0.10 umol H,O, equi./l; P<0.001).

Gene expression analysis (PI3K/AKT pathway)

qRT-PCR analysis showed significant changes in PI3K/
AKT signaling gene expression among the experimental
groups. In the DC group, the expression of PI3K, AKT,
mTOR, GLUT-4, and IRS1 was significantly down-regulated
(P<0.005), whereas GSK-3 was up-regulated compared
to the NC group. Treatment with hispidulin led to dose-

Table 2. Assessment of oxidative and anti-oxidant biomarkers in diabetic rats

dependent up-regulation of PI3K, AKT, mTOR, GLUT-4,
and IRS1, and a down-regulation of GSK-3p (Figure 5).
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Figure 5. Heatmap showing the relative mRNA expression of PI3K, AKT,
mTOR, GLUT-4, IRS1, and GSK-3p in pancreatic tissue of all experimental
rat groups (Group I: Normal Control, NC; Group II: Diabetic Control, DC;
Group III: Metformin-treated, Met.; Group IV: Hispidulin low dose, LD;
Group V: Hispidulin high dose, HD)

PI3K: Phosphoinositide 3-kinase, AKT: Protein kinase B, mTOR:
Mechanistic target of rapamycin, GLUT-4: Glucose transporter type 4, IRS1:
Insulin receptor substrate 1, GSK-3p - Glycogen synthase kinase-3 beta

Groups TBRAS CAT Nl NO TAC TOS
(nmol/mg protein) (U/mg protein) (U/mg protein) (umol/l) (mmol Trolox equi./I) (umol H202 equi./l)

NC 2.42+0.20 54.2+0.80 7.01+0.39 25.2+0.60 2.4+0.12 1.01+0.06

DC 5.58+0.32""" 28.01+1.28™" 3.62+0.54"" 11.440.10"" 1.1+0.10™" 3.6x0.21

Met. 3.1940.28%° 43.02+2.01% 5.800.30% 20.40.97 2.02+0.11 % 2.2+0.11%

LD 3.06£0.19°° 37.6+2.09% 4.75+0.31% 18.5+0.12% 2.10£0.10% 1.82+0.1220

HD 2.66£0.30 *® 47.01£2.10% 6.05£0.22°° 21.6+0.95% 2.41+0.14% 1.4510.10%°

Oxidant and anti-oxidant defense markers in experimental rat groups (Group I: Normal Control, NC; Group II: Diabetic Control, DC; Group III: Metformin-treated, Met.; Group
IV: Hispidulin low dose, LD; Group V: Hispidulin high dose, HD). Values are expressed as mean + SEM (n = 8). Statistical analysis was performed using one-way ANOVA followed
by Tukey’s post hoc test. *** Indicates a statistically significant difference between the normal control and diabetic control groups. Symbols ab denote significant differences between

the treatment groups and the diabetic control group.

TBRAS: Thiobarbituric acid reactive substances, CAT: Catalase, SOD: Superoxide dismutase, NO: Nitric oxide, TAC: Total anti-oxidant capacity, TOS: Total oxidant Status, SEM:

Standard error of the mean, ANOVA: Analysis of variance
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Discussion

Diabetes mellitus, particularly type II, is a long-term
metabolic condition characterized by persistently elevated
blood glucose levels and multiple metabolic abnormalities
(40, 41). Therapeutic approaches often focus on modulating
key enzymes involved in carbohydrate metabolism.
Inhibitors of alpha-glucosidase and alpha amylase delay
carbohydrate digestion and glucose absorption, thereby
attenuating postprandial hyperglycemia (17, 42). Although
conventionalantidiabeticagentsareeffective, theiruseisoften
limited by side effects and high costs (43, 44). Consequently,
there is growing interest in plant-derived alternatives, which
are generally more affordable and associated with fewer
adverse effects (44, 45). Nonetheless, most phytochemicals
require rigorous validation through preclinical and clinical
studies to establish their safety, efficacy, and therapeutic
potential (46, 47). This study investigated the therapeutic
efficacy of hispidulin in ameliorating HFD/STZ-induced
type 2 diabetes in a rat model.

Hispidulin, naturally found in various medicinal plants,
has attracted attention for its anti-inflammatory (19),
neuroprotective (20), and anticancer (21) activities. Previous
research has demonstrated that hispidulin regulates
oxidative stress and inflammation in experimental models
(48), enhances insulin sensitivity by activating AMPK, and
protects pancreatic beta cells from apoptosis (49). However,
the role of hispidulin in regulating PI3K/AKT signaling
and glycemic enzymes, such as alpha-amylase and alpha-
glucosidase, remains unexplored.

In this study, rats subjected to HFD/STZ developed
significant hyperglycemia, confirmed by elevated FBG
and impaired OGTT with a higher AUC. Treatment with
hispidulin significantly (P<0.001) reduced FBG and
ameliorated glucose tolerance as reflected in the lowered
AUC. Improved glucose homeostasis may be attributed
to hispidulin’s ability to enhance insulin responsiveness
and promote cellular glucose uptake by activating insulin-
dependent signaling pathways.

Inhibiting a-amylase and a-glucosidase, the principal
enzymes that catalyze carbohydrate digestion, represents
a therapeutic strategy for attenuating postprandial
hyperglycemia in diabetic conditions (50, 51). In the current
study, hispidulin exhibited dose-dependent (P<0.001)
inhibition of both enzymes, similar to the standard drug
acarbose. This aligns with the findings of Visvanathan et al.
and Gong et al. (52, 53), who reported that polyphenolic
compounds can bind and inactivate these enzymes, thereby
slowing glucose absorption. Hispidulin’s interaction with
digestive enzymes may thus contribute to its glycemic
control effects.

Persistent hyperglycemia and insulin resistance promote
chronic low-grade inflammation, which exacerbates
pancreatic beta cell dysfunction (54, 55). In this study,
diabetic rats showed significant elevations in TNF-alpha,
IL-6, CRP, and NFKkB, all of which were markedly reduced
(P<0.001) following hispidulin treatment. These results are
consistent with earlier findings that flavonoids suppress
inflammatory pathways by inhibiting NFkB activation and
downstream cytokines (56).

Oxidative stress is a major driver of IR and [-cell
apoptosis (6). The diabetic rates in this study exhibited
increased oxidative markers and decreased anti-oxidant
enzymes, Indicative of a disrupted redox balance.
Hispidulin significantly (P<0.001) restored anti-oxidant
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Figure 6. Hispidulin Modulation of PI3K/AKT pathway in diabetes

capacity, consistent with studies reporting its ROS-
scavenging capacity and mitochondrial protective effects.
The restoration of redox homeostasis contributes to beta cell
preservation and improved insulin secretion (57, 58).

One of the key findings of this study is the significant
(P<0.001) up-regulation of PI3K, AKT, mTOR, GLUT-
4, and IRS-, alongside a significant (P<0.001) down-
regulation of GSK-3p, following hispidulin treatment. This
suggests that hispidulin restores insulin signaling, enhances
glucose transport, and suppresses gluconeogenesis. The
activation of this pathway promotes beta cell survival and
insulin-stimulated glucose uptake, as reported in similar
studies exploring the insulin-mimetic effects of phenols
(59, 60). These molecular changes indicate that hispidulin’s
therapeutic effect may primarily be exerted through the
reactivation of the PI3K/AKT axis.

Hispidulin exerts an antidiabetic effect primarily by
regulating PI3K/AKT signaling and mitigating oxidative
stress and inflammation through down-regulation of
inflammatory cytokines, including TNF-a, CRP, IL-6, and
NFkB, and by inhibiting ROS. This anti-inflammatory
effect contributes to restoring insulin receptor sensitivity
by up-regulating IRS-1, leading to PI3K activation and
AKT phosphorylation. Activated AKT plays a dual role by
inhibiting GSK-3p, thereby promoting glycogen synthesis,
and by activating mTOR, which supports B-cell survival
and regeneration. These molecular events collectively
enhance GLUT-4 translocation and glucose uptake in
peripheral tissues, ultimately restoring glucose homeostasis
and improving insulin secretion, thereby highlighting
its potential role in ameliorating metabolic dysfunction
associated with diabetes.

Conclusion

The present study demonstrates that hispidulin
significantly improves metabolic and molecular alterations
linked with T2DM. Hispidulin treatment effectively lowered
fasting blood glucose levels, enhanced serum insulin
concentration, and improved insulin sensitivity indices,
indicating restoration of glycemic markers. Furthermore,
hispidulin significantly reduced levels of inflammatory
cytokines, suggesting improved B-cell function and insulin
dynamics. The compound also attenuated oxidative stress
by increasing the anti-oxidative markers and reducing TOS,
TBRAS, and NO, suggesting potent anti-oxidant potential.
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At the genetic level, hispidulin significantly up-regulated
the mRNA expression of PI3K, AKT, mTOR, IRS-1, and
GLUT-4 while down-regulating GSK-3p, thereby indicating
the PI3K/AKT signaling pathway and enhancing glucose
uptake and insulin signaling.
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