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Introduction 
Cyclic AMP (cAMP) plays a critical role in the 
function of pancreatic islets, hepatocytes and 
adipocytes (1, 2). In pancreatic islets, increasing 
the level of cAMP potentiates glucose-induced 
insulin secretion (GIIS). Gut incretins such as 
glucagon-like peptide-1 (GLP-1) and glucose-
dependent insulinotropic peptide (GIP) mediate 
their potentiating effects on GIIS mainly by 
increasing beta cell cAMP (1, 3). In hepatocytes 
and adipocytes, cAMP mediates the effects of 
glucagon and other physiological insulin 
antagonists thereby glycogenolysis and lipolysis 
are increased via elevating cAMP levels (4).  

The intracellular level of cAMP is regulated 
by the rate of synthesis and degradation (3). 
Activators of adenylyl cyclase (AC)                 
and inhibitors of cyclic nucleotide 
phosphodiesterases (PDEs) augment cAMP-
dependent signaling and produce a synergistic 
effect in combination (5).  In pancreatic beta-
cells AC activators, such as forskolin and non-
selective PDE inhibitor such as3- isobutyl-1-
methyl xanthines (IBMX) potentiate insulin 
release and in hepatocytes and adipocytes, they 
increase glycogenolysis and lipolysis (3). 

Eleven PDE families (PDE1-11) have been 
identified according to their substrate affinities, 
biochemical and physical properties, 
mechanisms whereby they are regulated, and 
different sensitivities to inhibitors (4). Several 
studies have shown that beta cells, hepatocytes 
and adipocytes contain PDE1, PDE2, PDE3 and 
PDE4, but PDE3 is the most important 
concerning the regulation of insulin secretion, 
glycogenesis and lipogenesis (6). PDE3 family 
is composed of two gens, PDE3A and PDE3B. 
PDE3B subunit is expressed in the adipocytes, 
hepatocytes and pancreatic beta-cells (1). The 
adipocyte and hepatocytes PDE3B has a key 
role in the antilipolytic and antiglycogenolytic 
effects of insulin. Moreover, PDE3B plays a 
role in tissue glucose uptake by insulin. As a 
result, using selective PDE3 inhibitors can 
disturb insulin actions in spite of increasing its 
secretion; for example, PC3911 (selective 
PDE3 inhibitor) inhibited insulin-induced 
glucose uptake and lipogenesis while it 
increased the insulin release (4). Also, it has 

been shown that in alert rats, milrinone, a 
selective PDE3 inhibitor, increased plasma 
insulin levels but inhibited insulin effect which 
result in increasing lipolysis and glycogenolysis 
(7). Furthermore, in fasted mouse, milrinone 
increased the levels of serum glucose (8).  

In a recent study, we investigated cardiotonic 
effects of methyl carbostiryl derivatives, 
analogs of cilostamide, on isolated rat atria. It 
was found that all of these compounds have 
inotropic properties but with different potencies. 
Among these compounds, MCPIP produced the 
highest inotropic effect comparable with IBMX. 
Surprisingly, the increasing inotropic effect of 
this compound did not accompany with 
increasing the rate of contraction (9). 
Considering the potential hyperglycemic and 
hyperlipidemic effects of selective PDE3 
inhibitors (4), the aim of this research was to 
discover possible metabolic variation among 
these compounds which may explain the 
possible mechanisms for their differential 
cardiac effect. We investigated the chronic and 
acute metabolic effects of several new 
synthetized PDE3 inhibitors mc1, mc2, mc5 and 
mc6) (Table 1) in comparison with IBMX and 
milrinone in mouse and hyperglycemic rat 
respectively.  

 
Materials and Methods 
The test compounds were synthesized according 
to the procedure reported by Sadeghian et al 
(10). Milrinone and glybenclamide were 
purchased from Sigma Chemical Co. 3-isobutyl-
1-methylxanthin (IBMX) and DMSO were 
provided by Fluka Chemical Co. Thiopental was 
supplied by Sandoz GmbH, Heparin 25000 units 
was provided by Rotex medica and Glucose 
Assay Kit (GOD-PAP method), Zeist Chem.  
Co. Insulin Assay Kit DiaSorin, Insik 5 or           
DSL-1600. 

 
Methods 
In vivo experiments in mouse 
Male mice (25-35 g), obtained from the          
animal house of Faculty of Medicine, were kept 
in controlled environmental conditions 
(temperature: 23±2 oC; light-dark cycle: 7 a.m. 
to 7 p.m.) and were divided randomly into 
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groups of seven. All test compounds were 
dissolved in DMSO and diluted to desire 
concentration with less than 1% DMSO.  

For the experiment, the test compound 
(IBMX, milrinone, MCPIP, mc1, mc2, mc5 or 
mc6) or solvent (control) was injected 
subcutaneously to mice at 1 mg/kg dosage twice 
a day (8:00 a.m. and 8:00 p.m.) for 7 days. On 
day 8, animals were anesthetized with 
intraperitoneal injection of thiopental (80 
mg/kg) and blood samples were obtained from 
their hearts and then the liver was dissected. 
Each sample was centrifuged for 5 min and its 
serum was separated. The serum and the liver of 
each animal were kept frozen in less than -18 oC 
for the following measurements. 

 
In vivo experiments in hyperglycemic rat 
Adult Wistar rats (250-350 g) obtained from the 
animal house of Faculty of Medicine Mashhad, 
were kept in controlled environmental 
conditions (temperature: 23 ± 2 oC; light-dark 
cycle: 7 a.m. to 7 p.m.), with free access to a 
standard diet and water. Each rat was fasted for 
12-14 hr. The rats were anesthetized with 
intraperitoneal injection of thiopental (80 
mg/kg). Femoral vessels were dissected and the 
artery and vein were canulated by heparinized 
catheters. A blood sample was obtained from 
femoral artery as fasting blood glucose. Then, 
0.5 g/kg glucose without (control) or with 1 
mg/kg of one of the test compounds was 
injected via femoral vein. In following, glucose 
was perfused with a rate of 1.5 g/kg/hr which 
maintained the hyperglycemic condition. Blood 
samples were obtained at time intervals of 5, 10, 
15, 30, 45, 60, 75 and 90 min via arterial 
catheter. Each sample centrifuged for 5 min and 
the serum was separated. The serum and the 
liver of each animal were frozen in less than          
-18 oC and kept for the subsequent 
measurements (11).  

 
Liver glycogen storage assay 
To measure liver glycogen storage, 0.5 g of 
each liver sample was mixed with water and 
homogenized with a homogenizer, and then 3 
ml of 4N HCl was added. To extract the liver 

glycogen, each sample tube was put in boiling 
water for 30 min, and then centrifuged for 5 
min. In this process, glycogen is hydrolyzed 
to glucose and released in the medium, 0.5 ml 
of supernatant was neutralized with 2.5 ml of 
1M K2HPO4 solution. The amount of glucose 
(mg) in each sample was measured by 
enzymatic glucose oxidase technique and 
calculated for one gram liver which 
multiplied by 0.9 to obtain the amount of 
glycogen (mg/g liver) (11). 

 
PDE assay 
PDE3 activity assays of test compounds were 
performed by BPS Bioscience Company (BPS 
Bioscience Inc, San Diego, United States) 
using PDE assay Kit. Fluorescence intensity 
was measured at an excitation of 485 nm and 
an emission of 528 nm using a BioTek 
SynergyTM 2 microplate reader (Figure 1). 

 
Statistical analysis 
The data were expressed as mean±standard 
errors of the mean (SEM). In the case of 
examining more than two groups, one-way 
analysis of variance (ANOVA) and the 
Tukey,,s post hoc test were employed. 
Differences between means were considered 
significant if P< 0.05. All the obtained data 
passed a normality test. 
 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1. The inhibitory effects of test compounds on 
PDE3 activity 
The effects of mentioned test compounds on PDE3B 
activity. PDE assay is performed by BPS Bioscience 
Company (BPS Bioscience Inc, San Diego, United 
States). Each IC50 was calculated using Graph Pad 
Prism software. 
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PDE nhibitors but with different efficacies 
(the amount of blood glucose at minute of 45, 
mg/dl, control = 203±5, IBMX = 138±7, 
milrinone = 149±17, MCPIP= 166±4, mc1= 
170±4, mc2= 146±5, mc5= 136±7 and mc6= 
150±9, in comparison with the control,             
P< 0.001). This effect was potentiated with 
the combination of milrinone and 
glybenclamide (129±6 mg/dl). After that, 
until the end of experiment, in the control 
group, the blood glucose was increased 
constantly (blood glucose at minute of 90, 
mg/dl, control= 240±10). While, during this 
period, the blood glucose was remained low 
in the presence of IBMX and increased 
slightly with selective PDE3 inhibitors (blood 
glucose at minute of 90, mg/dl, IBMX= 
144±6, milrinone= 160±18, MCPIP= 186±2, 
mc1= 190±8, mc2= 170±3, mc5= 161±6 and 
mc6= 186±9, in comparison with the control, 
P< 0.001) (Table 2). However, combination 
of milrinone and glybenclamide reduced 
blood glucose to a level comparable with 
fasting condition (mg/dl, fasting= 80±4, 
milrinone + glybenclamide = 89±2) (Table 2). 

 
Serum insulin level in hyperglycemic rats 
In the control group, loading and infusion of 
glucose augmented blood insulin levels 
rapidly (μIU/ml, fasting = 12±2, after 5 min 
infusion= 40±5) and remained nearly constant 
(Figure 4). In comparison with the control, 
IBMX did not change plasma insulin levels 
(Figure 4). Milrinone increased glucose-
induced insulin secretion initially but after 
minute of 30, the blood insulin concentrations 
reduced to level comparable with the control. 
However, combination of glybenclamide and 
milrinone increased glucose-induced insulin 
secretion (P< 0.05) through the experiment 
except at minutes 5 and 75 (Figure 4). 

 
Glycogen storage level in hyperglycemic rats 
We assessed the effect of 90 minutes 
hyperglycemia on liver glycogen storage in 
the presence and absence of PDE inhibitors. 
In comparison with the control group IBMX, 
mc5, mc6 (P< 0.01) and MCPIP (P< 0.05) 
significantly decreased the glycogen storage 

level (milligram glycogen per gram liver 
tissue, control= 56±2, IBMX= 40±3,            
mc5= 41±1.5, mc6= 43±2 P< 0.01 and 
MCPIP= 45±2 P< 0.05), while milrinone, 
milrinone + glybenclamide and mc1 did not 
significantly decrease glycogen storage 
(control= 56±2, milrinone= 47±3, milrinone + 
glybenclamide= 46±4,  mc1 =52±2, P>0.05). 
It was remarkable that mc2 produced an 
anabolic effect and increased liver glycogen 
storage significantly (control= 56±2, mc2= 
70±3, P< 0.01) (Figure 5).  
 
Discussion  
Selective PDE3 inhibitors increase glucose 
production (1, 18). This is consistent with a key 
role for PDE3 in insulin-induced 
antiglycogenolysis in the liver (19). Also 
inhibition of PDE3B in adipocytes would 
counteract with the insulin induced antilipolysis, 
which would increase fatty acid release resulting 
in insulin resistance (20, 21). Insulin resistance in 

 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
Figure 4. The levels of serum insulin in hyperglycemic rat 
0.5 g/kg glucose accompanied with a test compound 
(IBMX, Milrinone [mil], Milrinone+Glybenclamide 
[mil+gly]) or solvent (cont) was injected intravenously 
which was followed by an infusion of 1.5 g/kg/hr 
glucose. Blood samples were collected in mentioned 
intervals via arterial catheter. Insulin was measured by 
RIA method. Each point represents means ± SEM from 
7 samples. 
*) P< 0.05 significantly difference between control  
and combination of milrinone and glybenclamide                   
( mil+gly) 
�) P< 0.05 significantly difference between control 
and milrinone (mil)  
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skeletal muscle glucose uptake in normal 
subjects while vasoconstrictors (e.g. L-N-
monomethylarginine (L-NMMA) an inhibitor 
of NO synthesis) decrease skeletal muscle 
glucose uptake (31, 32).  

The long term administration of PDE 
inhibitor produced differential effect on mouse 
blood glucose levels and liver glycogen storage.  

The effect of mc2 in increasing liver 
glycogen storage in rat and mouse is related to 
its insulinotropic effect with producing weak 
insulin resistance in both species. However, the 
differential effects of milrinone on liver 
glycogen in rat and mouse may suggest that the 
species-dependent effect of selective PDE3 
inhibitors on liver is independent on PDE 
inhibition. It has been shown that, imazodan is a 
potent inotropic agent in anesthetized dog while 
it produces little or no inotropic effect  in guinea 
pig and rat (33). In rat and guinea pig 
imazodan-sensitive subclass of PDE3 is in a 
soluble form while in dog, it is in a membrane-
form and probably this can play role in different 
response to imazodan in rat and dog. It has been 
referred to the presence of species-dependency 
property for the effects of selective PDE3 
inhibitors in heart (33). However, in liver, most 
of the PDE3 activity is located in particulate 
and PDE3 inhibition reduces liver glycogen (3). 
Therefore, the reducing effect of other test 
compounds on the liver glycogen storage in 
mouse and hyperglycemic rat may refer to PDE 
inhibition. The differential effects of test 
compounds in rat and mouse on liver glycogen 
storage may be because of their differential 
indirect mechanisms which need more 
investigation. IBMX and adenylyl cyclase 

activators (forskolin) stimulate thyroid 
hormones secretion that increase glycogenolysis 
via cAMP-activated pathway (34, 35) and 
increase endogenous glucose production, 
hepatic insulin resistance via a sympathetic 
pathway from the hypothalamic paraventricular 
nucleus (PVN) to the liver (36). As a result, 
stimulation of thyroid hormone sensitive 
neurons in the PVN increases endogenous 
glucose production by sympathetic projections 
to the liver (36).  
 
Conclusion 
Increasing plasma insulin levels by 
combination of milrinone and glybenclamide 
confirm that in hyperglycemic rat, the 
hypoglycemic effect is correlated with 
increasing insulin secretion. Augmentation of 
GIIS is obscured by the pulsative 
characteristic of pancreatic insulin release. 
Decreasing glycogen storage by IBMX, mc5, 
mc6 and MCPIP reflects inhibition of liver 
PDE activity by these compounds which 
result in insulin resistance in liver. The 
reasons for ineffectiveness of mc1, anabolic 
effect of mc2, and differential effects of 
milrinone is not clear. This may be because of 
differential inhibitory effect of these 
compounds on liver PDE activity in in vivo 
condition and may represent a tissue 
selectivity and/or species-selectivity property. 
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