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Objective(s): Nitric oxide (NO) is an important neurotransmitter in central nervous system involved in 
central cardiovascular regulation. The presence of NO in the pedunculopontine tegmental (PPT) 
nucleus has been shown, but its cardiovascular effect has not been determined. In the present study, 
the cardiovascular effect of NO in the PPT nucleus was evaluated. 
Materials and Methods: After induction of anesthesia, a polyethylene catheter (PE-50) filled with 
heparinized saline inserted into the femoral artery, and the blood pressure (BP) and heart rate (HR) 
were continuously recorded. Animals were then placed in a stereotaxic apparatus and maximum 
changes of mean arterial pressure (∆MAP) and heart rate (∆HR) after microinjection of two doses of 
NG-nitro-L-arginine methyl ester (L-NAME, 30 and 90 nmol), L-arginine (L-Arg 10 and 50 nmol) and 
sodium nitroprusside (SNP, 9 and 27 nmol) into the PPT were provided and compared with control 
group (One-way ANOVA). 
Results: Both doses of L-NAME significantly increased ∆MAP compared to control (P<0.05 and P<0.01, 
respectively). ∆HR only in higher dose (90 nmol) significantly increased compared to control (P<0.05). 
Two doses of L-Arg (10 and 50 nmol/150 nl) had no significant effect on ∆MAP or ∆HR. Higher dose of 
SNP (27 nmol) significantly decreased ∆MAP (P<0.05) and its both doses significantly decreased ∆HR 
compared to control (P<0.05 and P<0.001, respectively). Effect of higher dose on ∆HR was significantly 
higher than the lower dose (P<0.05).  
Conclusion: Our results show an inhibitory effect of the nitrergic system of the PPT on central 
cardiovascular system.  
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Introduction 
The pedunculopontine tegmental (PPT) nucleus,            

a mesencephalic nucleus, participates in several 
functions including motor control, rapid eye movement 
sleep (REM), orientation, attention and autonomic 
regulation (1, 2). The role of PPT in the regulation of 
cardiovascular events has also been shown in previous  
studies (2, 3). It has been shown that microinjection of 
glutamate into the PPT nucleus evoked cardiovascular 
responses (2). In addition, previous studies have shown 
that the PPT is connected with regions, such as rostral 
ventrolateral medulla (RVLM), the hypothalamus 
nuclei, periaqueductal gray matter (PAG), nucleus 
tractus solitarius (NTS), cuneiform nucleus (CnF) and 
raphe nuclei that are involved in the cardiovascular 
regulation (3-6).  

Nitric oxide (NO) is a well-known regulatory 
molecule with several physiological and pathological  

 

functions (7, 8). Hypotensive effect of NO on cardi-
ovascular system has been previously shown (9). In 
addition, inhibition of NO synthesis by oral 
administration of NG-nitro-L-arginine methyl ester 
(L-NAME), an inhibitor of NO synthase (NOS), caused 
sustain increase of blood pressure (BP) and is known 
as a model for induction of hypertention (10, 11).  

Central cardiovascular effect of the nitrergic 
system has also been identified in several studies (9, 
12-15) .The intracerebroventricular (ICV) injection 
of L-Arg (precursor of NO) increased NO synthesis 
within the CNS and reduced abdominal sympathetic 
nerve discharge in rats (8). The presence of NO in 
certain nuclei involved in cardiovascular regula-tion 
(such as RVLM, NTS, and paraventricular nucleus 
(PVN) has also been shown (15, 16). Unlike NOS 
inhibitors such as L-NAME, microinjection of             
L-arginine (L-Arg, a precursor of NO) into the RVLM 
decreased BP (17). There is also evidence that NO  
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has a modulatory effect on the sympathetic nervous 
system (18). Presence of NO in the PPT nucleus has 
been previously shown (19). It is also reported a 
cholinergic projection of the PPT RVLM, an 
important area in cardiovascular regulation (6). 
Neurons of these cholinergic projections in addition 
to synthesis of acetylcholine (Ach) are also capable 
to synthesize NO (19).  

Due to the presence of NO in the PPT and its        
co-localization with Ach in the PPT cholinergic 
projections to central cardiovascular areas, it is 
suggested that the nitrergic system of the PPT is 
involved in central cardiovascular regulation. 
Therefore, this study was performed to evaluate the 
effects of this system on cardiovascular responses in 
the PPT nucleus.   

 
 

Materials and Methods 
Animals and drugs 

In present study, sixty male Wistar rats (200–250 
g) were provided from Mashhad University of the 
Medical Sciences animal center. The animals were 
housed at room temperature (22±2 °C), on a 12 hr 
light/dark cycle. Food and water were available ad 
libitum properly.  

The drug and reagents including urethane, L-
NAME (an inhibitor of NOS), L-Arg (a precursor of 
NO) and sodium nitroprusside (SNP, a donor of NO) 
were provided from Sigma Chemical Company, USA. 
All drugs dissolved in saline. 
 
Surgery and microinjection of the drugs 

The rats were anesthetized intraperitoneally with 
urethane (1.4 g/kg), and supplementary doses 
(0.7 g/kg). A polyethylene catheter (PE-50) filled 
with heparinized saline was inserted into the                   
left femoral artery. The mean arterial pressure 
(MAP) and heart rate (HR) were continuously 
recorded by a power lab system (ID instrument, 
Australia). After cannulation, the animals were 
placed in a stereotaxic apparatus (Stoelting, USA). 
The scalp was incised and the skull was leveled 
between lambda and bregma, and a small hole 
drilled in the skull. The stereotaxic coordinates of the 
PPT were -7.6 to -8.5 mm caudal to bregma, -1.8 to -
2.2 mm lateral to the midline suture and -6.8 to -7.8 
mm ventral from the bregma according to the atlas of 
Paxinos and Watson (20). Drug microinjection into 
the PPT nucleus was performed by a single barreled 
micropipette with an internal diameter ranging 35–
45 μm. The micropipette connected through a PE-10 
tube to an injection syringe and was carefully 
introduced into the PPT and injection was 
performed. Injections volume in all groups was 150 
nl that injected in 30 sec (21, 22). The protocol of 
study was approved by the Bioethics committee of 
Mashhad University of Medical Sciences (ID, 
922758). 

The following groups were used in this study: 

1- The control group: Microinjection of vehicle 
(normal saline) into the PPT 
2,3 L-NAME groups: Microinjection of L-NAME (30  
and 90 nmol) (23-25) 
4, 5- L-Arg groups: Microinjection of L-Arg (10 and50 
nmol ) (25, 26) 
6,7- SNP groups: Microinjection of sodium 
nitroprusside (9 and 27 nmol)(27) 

 
Data analysis 

The data of BP and HR values were expressed as 
mean±SEM. The maximal changes of ∆MAP and ∆HR 
in each group were provided and compared with the 
control group using the one-way ANOVA followed by 
Tukey’s post hoc test. The changes of ∆MAP and              
∆HR between two doses were also compared by 
independent-samples t test. P<0.05 was used to 
indicate statistical significance. 
 
Histological procedure  

At the end of each experiment, the injection sites 
were marked by up and down movement of 
micropipette to construct an obvious track (28). The 
brains were perfused transcardially with 100 ml of 
0.9% saline, followed by 100 ml of 10% formalin. 
After that, the animals were sacrificed by high dose 
of urethane. The brains were removed and stored in 
10% formalin for at least 24 hr at 4 oC. Serial sections 
(60 μm) were prepared and the locations of the 
injection sites (29) were verified according to a rat 
brain atlas (20) under the light microscope (29). 

 

Results  
Microinjection of the saline (100-150 nl, n = 10) 

into the PPT showed that there were no significant 
differences in changes of MAP (Before: 93.4 ± 5.30 
mmHg, after: 95. 8 ± 6.3 mmHg) and HR (Before: 
312.4 ± 9.5 beats/min, after: 318.7 ± 10.5 beats/min) 
before and after injection.  

To determine the role of NO in the cardiovascular 
system, in first experiment, two doses of L-NAME, an 
inhibitor of NOS, (30 and 90 nmol/150 nl) were 
microinjected into the PPT. Tracing of cardiovascular 
responses after injection of L-NAME has been shown 
in Figure 1. As shown, both doses of L-NAME 
increased BP and HR. Maximal ∆MAP in both doses 
were significantly higher compared to control group 
(dose 30: P<0.05; n= 9 and dose 90: P<0.01, n= 10; 
one way ANOVA, Figure 2 a). Comparing the effect of 
two doses of L-NAME indicated that the effect of high 
dose on ∆MAP is significantly higher than the low 
dose (P<0.05, independent-samples t test). Both 
doses of L-NAME increased ∆HR compared to control 
group, but the only effect of higher dose on ∆HR was 
significant compared to the control group (Dose 30: 
P>0.05; n= 9 and Dose 90: P<0.01, n= 10, Figure 2b). 
The ∆HR in higher dose was also significant 
compared to the lower dose (dose (P<0.05; 
independent-sampl es t test).   
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Figure 1. Samples of changes of blood pressure (BP) and heart 
rate (HR) to microinjection of lower (A) and higher (B) doses of                 
NG-nitro-L-arginine methyl ester (L-NAME) into the pedunculo-
pontine tegmental (PPT) nucleus 
The vertical lines indicate the injection time 

 
In second experiment two doses of L- Arg (10 and 

50 nmol/150 nl), were microinjected into the PPT. 
Figure 3 shows a tracing of cardiovascular responses 
after injection of L-Arg. Maximal ∆MAP of two doses 
were not significant compared to the control group 
(P>0.05; one way ANOVA; n=8, Figure 4a). The HR 
changes of both doses of L- Arg also decreased ∆HR. 
However, these effects were not significant 
compared to the control group (P>0.05; one way 
ANOVA, n=8, Figure 4b). 

In third experiment, two doses of SNP, a donor              
of NO, microinjected into the PPT nucleus. Figure                
5 shows a sample of cardiovascular responses               
after injection of SNP. Maximal changes of two doses                
are shown in Figure 6 .As shown, both doses of SNP 
decreased maximal ∆MAP compared to control 
group, but only effect of higher dose was  significant 
(P<0.05; one way ANOVA; n=8, Figure 6a). Both 
doses of SNP significantly decreased ∆HR compare to 
control group (dose 9: P<0.05; n=7 and Dose 27: 
P<0.001, n= 8; Figure 6 b). However, effect of higher 
dose on ∆HR was also significant compare to the 
lower dose (P<0.01; independent-sampl es t test).  
 

 
 

Figure 2. Maximal changes of mean arterial pressure (ΔMAP) and 
heart rate (ΔHR) in response to microinjection of two doses of NG-
nitro-L-arginine methyl ester (L-NAME) (30 and 90 nmol) into the 
pedunculopontine tegmental (PPT) nucleus n=11 a; MAP, b; HR             
*; P<0.05, **; P<0.01 compare to control group (One-way ANOVA 
followed by Tukey's post hoc test) +; P<0.05 dose 30 compare to 
dose 90 (independent-samples t test)  
 

 
 

Figure 3. Samples of changes of blood pressure and heart rate to 
microinjection of lower (A) and higher (B) doses of L-arginine              
(L-Arg) into the pedunculopontine tegmental (PPT) nucleus.  
The vertical lines indicate the injection time 
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Figure 4. Maximal changes of mean arterial pressure (ΔMAP) and 
heart rate (ΔHR) in response to microinjection of two doses of L-
arginine (L-Arg; 10 and 50 nmol) into the pedunculopontine 
tegmental (PPT) nucleus 
 
 

Discussion 
The cardiovascular effect of NO has been well-

known in several nuclei such as RVLM and NTS           
(30-34). However, this effect of NO in the PPT 
nucleus is not determined. The result of present 
study showed that nitrergic system of the PPT 
nucleus has an inhibitory effect on the central 
cardiovascular system, so microinjection of L-NAME, 
a NOS inhibitor, into the PPT increased MAP and HR, 
while NPS decreased MAP and HR, and L- Arg has no 
significant effect on these cardiovascular values. The 
cardiovascular effect of NO in the PPT nucleus is 
unknown. However, it is speculated that these effects 
are complicated and may be mediated by several 
mechanisms. It has been shown that NO by increa-
sing cyclic guanosine monophosphate (cGMP) 
modulate vasomotor neurons activity (15, 16, 35). 
The NO has also an inhibitory effect on the 
sympathetic system (18). Because the PPT has 
projection to RVLM; an important sympatho-
excitatory area in the medulla (36), it is conceivable 
that inhibitory effect of nitrergic system of the PPT  
is mediated via effect on vasomotor neurons of            
the RVLM. The cardiovascular function of the 
sympathetic system is regulated by pre-sympathetic 
motor neurons located in the several brain areas 
including brain stem (36). These brain areas have a 
vigorous effect on regulation of cardiovascular 
responses (37). In consistent with our opinion,                
the result of a previous study has shown that 
microinjection of L-NAME into the RVLM increased 

 
 
 

Figure 5. Samples of changes of blood pressure (BP) and heart 
rate (HR) to microinjection of lower (A) and higher (B) doses of 
sodium nitroprusside (SNP) into the pedunculopontine tegmental  
(PPT) nucleus; The vertical lines indicate the injection time 

 
 

 
 
Figure 6. Maximal changes of mean arterial pressure (ΔMAP)             
and heart rate (ΔHR) in response to microinjection of two doses     
of sodium nitroprusside (SNP, 9 and 27 nmol) into the 
pedunculopontine tegmental (PPT) nucleus  
 n =11     A; MAP, B; HR   ;* P<0.05, **; P<0.001   Compare to control 
group (One-way ANOVA followed by Tukey's post hoc test) 
++; P<0.01   Dose 9 compare to dose 27 (independent-samples                  
t test) 
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blood pressure and sympathetic nerve activity, and 
microinjection of L-Arg and NPS decreased these 
variables (17). In our study, microinjection of SNP 
decreased cardiovascular responses, while L-NAME 
increased these responses. Because SNP is a donor  
of NO, it is suggested that presence of NO in the            
PPT has inhibitory effect on vasomotor of the 
sympathetic system. The L-NAME decreased inhibitory  
effect of NO on vasomotor of sympathetic system and 
increased blood pressure by blocking the production of 
NO. Because microinjection of the L-Arg into the PPT 
nucleus did not change cardiovascular parameters, we 
suggested that L-Arg of the PPT in basal condition 
cannot be converted to NO by NOS. Previously, a 
cholinergic projection from the PPT to RVLM has 
been reported (3). These cholinergic neurons of the 
PPT, beside synthesis of Ach, could also be involved 
in synthesis of the NO (38). Due to co-localization of 
NO and Ach, we suggested that NO released from 
terminals of this projection PPT cholinergic neurons 
diffuses on the vasomotor neurons of sympathetic 
system in RVLM and decreases cardiovascular 
responses by inhibitory effect on these neurons. A 
non- cholinergic projection from the PTT to several 
areas has also been reported (39). So, another 
possibility is that cardiovascular effect of NO is 
mediated by this projection. 

The presence of several neurotransmitters involve-
ed in cardiovascular regulation such as glutamate, 
gamma-aminobutyric acid (GABA) and Ach has been 
reported in the PPT nucleus (40, 41). Therefore,                
it is proposed that modulation of the cardiovascular 
responses of NO in the PPT is mediated by interact-
tion with these neurotransmitters. One abundant 
neurotransmitter in the PPT nucleus is Ach. Interaction 
of Ach, NO and sympathetic nervous system in 
controlling the cardiovascular responses has been 
demonstrated (42). Therefore, interaction of NO with 
Ach is also suggested in cardiovascular effect of the PPT 
nucleus. There is also evidence that inhibitory effect of 
NO on cardiovascular responses is partly mediated by 
GABAergic system. For example, Zhang and Patel in 
1998 reported that inhibitory effect of NO in the PVN 
nucleus is mediated by the GABAergic system (43). 
Because GABA neurotransmitter is also present in the 
PPT, we suggested that the effect of NO in the PPT 
nucleus may be partly mediated by interaction with 
GABAergic system. Interaction of NO with glutamate in 
the central cardiovascular regulation system has also 
been shown in some previous studies (44, 45). 
Presence of glutamate in the PPT has been reported, 
and it has been shown that microinjection of 
glutamate into the PPT can induce pressor response 
(2). In addition, it is reported that NO donors 
decreased depolarization effect of NMDA receptor of 
glutamate in the PPT neurons (19). Based on these 
evidences, interaction of NO with glutamate in 
controlling the cardio-vascular response of the PPT 
can also be speculated. Effect of NO on central 

regulation of cardiovascular responses is different 
depending on conditions. For example, nitrergic 
system of RVLM in anesthetized rats shows inhibitory 
effect on the cardiovascular system (17). But, a pressor 
and sympathoexcitatory effect has been shown in 
conscious rat (46). However,  our study was performed 
in anesthetized rats; therefore, it is reasonable that the 
effect of NO in the PPT in anesthetized and conscious 
rats is different. However, future studies needed to 
clarify this opinion. Previous studies showed that the 
PPT project to several areas involved in cardiovascul ar 
regulation such as NTS, PAG, raphe nuclei, PVN and 
lateral hypothalamus (5). It is possible that 
cardiovascular effect nitrergic system of  the PPT is 
indirect   and  mediated by these areas. The PPT 
participates in several functions including control of 
movement, respiratory regulation and behavioral 
functions (3). There are also evidences that local neural  
networks are present in the PPT nucleus that each one 
regulates a special function (2, 47). Based on these 
observations, we suggest that a local network related to 
cardiovascular regulation is also formed in the PPT 
nucleus and NO has modulatory effect on this local 
network.  

Involvement of the PPT nucleus in both waking 
and sleep states has also been reported (38).              
The results of an electrophysiological study have 
shown that firing rate of one group of the PPT 
neurons in active wake is higher than sleep (48). 
Because the PPT involves in waking–sleep cycle and 
cardiovascular regulation (3, 38), it is speculated that 
this groups of neurons are nitrergic and beside 
projection to waking- sleep areas have a projection 
to central cardiovascular areas and participate in the 
central control of cardiovascular responses in 
waking –sleep cycle. However, further works needed 
to clarify this opinion. 
 

Conclusion  
In summary, the present study for first time 

provides evidence that nitrergic system of the PPT 
nucleus has an inhibitory effect on basal cardiovascular 
responses. 
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