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Objective(s):Rapamycin is an immunosuppressant compound with a broad spectrum of pharmaco-
logical activities. In recent years, it has been used successfully to decrease ischemia-reperfusion injury 
in several organ systems. The purpose of the present study was to examine the effect of rapamycin 
on testicular ischemia-reperfusion injury. 
Materials and Methods: Seventy-two adult male Wistar rats were divided into six groups: control 
(group1), sham-operated (Group2), T/D + DMSO as vehicle group (group3), and groups 4–6; 
respectively received 0.5, 1, and 1.5 mgkg-1 of rapamycin , IP 30 min before detorsion. Ischemia was 
achieved by twisting the right testis 720o clockwise for 1 hr. The right testis of 6 animals from each 
group were excised 4 hr after detorsion for the measurement of lipid peroxidation, caspase-3, and 
antioxidant enzyme activities. Histopathological changes and germ cell apoptosis were determined by 
measuring mean of seminiferous tubules diameters (MSTD) and TUNEL test in right testis of 6 animals 
per group, 24 hr after detorsion. 
Results: Testicular T/D caused increases in the apoptosis, malondialdehyde (MDA), and caspase-3 
levels and decreases in the superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase 
(GPx) activities in ipsilateral testis (P<0.001). The rats treated with rapamycin had significant 
decreases in the MDA and caspase-3 levels and significant increases in the SOD, CAT and GPx activities 
in ipsilateral testis compared with the T/D group (P<0.001); germ cell apoptosis was decreased, and 
MSTD was improved. 
Conclusion: Rapamycin administration during testicular torsion decreased ischemia/reperfusion (I/R) 
cellular damage. 
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Introduction 
Testicular torsion is a true urologic emergency and 

a delay in its diagnosis and management can lead to 
loss of the testicle. Torsion is the most common cause of 
testicle loss in newborns, children and adolescent             
boys (1). Testicular torsion/detorsion (T/D) causes 
morphological and biochemical changes by I/R injury of 
the testicular tissue. This I/R injury is associated with 
over generation of reactive oxygen species (ROS) and 
reactive nitrogen species (2). Rapamycin (sirolimus), an 
antibiotic derived from Streptomyces hygroscopius,                
is an FDA approved immunosuppressant drug (3). 
Rapamycin is a well-known specific inhibitor of the serine-

 

threonine kinase mammalian target of rapamycin complex-
1 (mTORC1). Recently, Calap-Quintana et al. (4) have 
reported that antioxidant defense mechanism of 
rapamycin is through the inactivation of mTORC1 
signaling. Rapamycin targets several cellular functions 
such as cell growth, proliferation, and autophagic cell 
death, and plays a critical role in pathophysiology of 
cancer (5), diabetes (6), neurological disorders (7), and 
cardiovascular diseases(8). There is also evidence, 
indicating that rapamycin inhibited apoptosis by 
preventing phosphorylation of proapoptotic proteins 
such as p53 and activation of the mitochondrial cell 
death pathway (9). In addition, rapamycin enabled to 
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enrichCD4+CD25+Foxp3+ regulatory T (Treg) cells to 
exert anti-inflammatory effects during IR process 
(6).By considering these investigations, rapamycin can 
probably have a protective role against testicular I/R 
injuries. Thus, here for the first time, the 
protectiveeffects of rapamycin on testicular T/D injury 
were evaluated in a rat model. As far as we know, MDA 
is the final product of lipid peroxidation and is 
frequently used to define oxidative stress; SOD, GPX, 
and CAT represent antioxidant enzymes and caspase-3 
is a marker of apoptosis; therefore, in this study we 
evaluated MDA, SOD, GPX, and CAT as markers of 
oxidative stress and caspase-3 as a marker of apoptosis. 
 

 

Materials and Methods 
Animals and ethics 

A total of 72 male Wistar albino rats, weighing 
200–250 g, were divided into 6 groups of 12 animals 
each. Animals were purchased from Department of 
Pharmacology, Tehran University of Medical Sciences 
and housed at 23±2 oC and 12 hr light/dark cycle 
with free access to water and standard food. The 
local ethics committee approved all of the protocols. 

 
Drug and treatment 

Rapamycin was dissolved in DMSO and adminis-
tered intraperitoneally. To rule out the alterations in 
lipid peroxidation and antioxidant enzymes activities 
induced by testicular T/D, right testes of six animals 
in each study group were removed 4 hr after 
beginning of reperfusion, given that an increase in 
oxidative stress biomarkers is detectable as early as 
4 hr after testicular reperfusion (10, 11). The 
procedure was repeated for six other animals that 
had undergone T/D from each group to evaluate 
germ cell apoptosis 24 hr after reperfusion, when 
peak level is reached (11-13). The protective effects 
of rapamycin in testicular T/D were studied by 
administration of specific doses of the drug (0.5, 1 
and, 1.5 mg kg-1, IP).   

The studied groups were arranged as follows:  
Group 1: Control rats as base line; 
Group 2: Sham-operated rats; 
Group 3: T/D operated rats, received 2 ml 

injection of DMSO as vehicle, 30 min after torsion 
(vehicle group) 

Groups 4 to 6: T/D operated rats, received inject-
tion of rapamycin at doses of 0.5, 1, and 1.5 mg kg-1, 
30 min after torsion(10, 13, 14). 
 
Experimental testicular T/D procedure 

Surgical procedures were performed under 
general anesthesia by intraperitoneal injection of 
ketamine (50 mg kg-1) and chlorpromazine (25 mg 
kg-1). Following a vertical incision in scrotal zone, 
tunica vaginalis was opened and the right testis was 
twisted (720° in clockwise direction). One hour later, 
the testis was counter-rotated to the natural position 
and was inserted into the scrotum. Then, the skin 

incision was sutured (4–0 nonabsorbable) and 
animals were kept until harvesting time. In the 
sham-operated animals, only surgical stress was 
applied by immediately retracting and replacing the 
spermatic cord. 
 

Biochemical assays 
To evaluate the oxidative stress damage, bioche-

mical assays in tissue were performed following 
ipsilateral orchiectomy of right testis 4 hr after 
detorsion. The samples were rapidly stored in -80°C 
for measurement of tissue malondialdehyde (MDA), 
superoxide dismutase (SOD), catalase (CAT), gluta-
thione peroxidase (GPx), and caspase-3 levels changes. 
 

Measurement of tissue MDA level 
Concentrations of free MDA, an end product, and 

marker of lipid peroxidation in cell membrane (15), 
were assayed using thiobarbituric acid reactive 
substance (TBARS), as described by Ohkawa et 
al(16). In brief, testes were homogenized in 1.15% 
KCl to make a 10% (w/v) homogenate. Then, 0.9 ml 
of 1.8% sodium dodecyl sulphate (SDS), 1.5 ml of 
20% acetic acid solution (pH = 3.5) and 1.5 ml of 
aqueous TBA solution were regularly added to 0.1 ml 
of tissue homogenates. The prepared homogenates 
were centrifuged at 4000 rpm for 10 min. The 
supernatant was applied to spectrophotometrically 
determine the MDA level (λ= 532 nm). 
 

CAT activity 
CAT activity was spectrophotometricallydeter-

mined in accordance with the method established by 
Aebi (17). Tissue sections were homogenized in 1% 
Triton X-100 and were diluted with potassium 
phosphate buffer. The reaction was initiated follow-
ing addition of hydrogen peroxide (H2O2), and CAT 
activity was quantified based on ability of tissue CAT 
to decompensate H2O2 by calculating the decrease in 
absorbance at 240 nm. 
 

GPx activity 
GPx activity was measured by modified method of 

Paglia and Valentine (18). The enzymatic reaction 
was initiated following addition of H2O2, and the 
alteration in absorbance at 340 nm was applied to 
measure GPx activity using a spectrophotometer. 
GPx catalyzed oxidation of glutathione (GSH) by 
reduction of H2O2 to H2O. This reaction is coupled 
with oxidation of nicotinamide adenine dinucleotide 
phosphate (NADPH) to NADPH+. 
 

SOD activity 
Using the Paoletti and Mocali method (19), SOD 

activity level was assayed based on its ability to 
inhibit NADH oxidation in the reaction mixture and 
conversion of superoxide anions (O2 ) to H2O2 and 
molecular oxygen (O2). SOD activity was determined 
by decreased absorbance at 340 nm during the 
reaction. 
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Caspase-3 level 
The caspase-3 level was measured using ELISA 

detection kit based on the Biotin double antibody 
sandwich technology. The colorimetric alteration of 
samples at 450 nm was applied to measure caspase-3 
concentration (ng ml-1) by drawing a standard curve 
(20). 
 
Histopathological analysis 

Histological alterations were analyzed byipsilate-
ral orchiectomy 24 hr after detorsion, following a 
rapid cervical dislocation. The specimens were fixed 
in 10% phosphate-buffered formalin, and post-fixed 
in 70% ethanol, then three 5 µm thick sections were 
prepared from the upper, lower, and mid portions. 
After deparaffinization of the sections and staining 
with haematoxylin–eosin (H&E), slides were evalu-
ated using light microscopy at 100×magnification by 
two independent reviewers who were blinded to the 
study design (Figure 1). 

To quantify testicular histological injury, the 4-level 
grading scale of Cosentino's score was used (21): 
Grade 1: normal structure with regular arrangement of 
germ cells 
Grade 2: testicular injuries with less orderly, noncohesive 
germ cells and closely packed seminiferous tubules 
Grade 3: testicular injuries with disordered, sloughed 
germ cells with shrunken, pyknotic nuclei, and less 
distinction in seminiferous tubule borders 
Grade 4: testicular injuries with coagulative germ cell 
necrosis and intensely packed seminiferous tubules. 

Moreover, for each sample, MSTD was calculated 
by measurement of 10 separate roundest semini-
ferous tubules using a light microscope-adaptable 
micrometer. 
 

Evaluation of germ cell apoptosis using TUNEL assay 
Immunohistochemical terminal deoxynucleo-

tidyl transferase-mediated deoxyuridine triphosphate-

biotin nick-end labeling (TUNEL) staining method 
distinguishes cleavage of genomic DNA duringapop-
tosis, which presents in situ DNA fragmentation in 
germ cells. Semi quantitative assessment of apop-
totic nuclei in specimens was performed using the 
APO-Brdu-IHC kit according to the manufacturer’s 
instructions.5 μm sections were cut and processed 
for TUNEL assay. Of each specimen, one hundred 
seminiferous tubule cross sections were evaluated 
for the appearance of apoptotic nuclei with intense 
green staining by manual counting at 200×magnifica-
tions under light microscopy by two experts who 
were unaware of the study design, and the mean 
number of apoptotic nuclei per tubule cross section 
was used for statistical analysis. Only circular 
tubular cross sections cut in bold face were used in 
these studies.(10, 11, 13). 

 
Statistical analysis 

All statistical data and significance tests were 
performed by using Sigma plot version 12. All data 
were expressed as mean±SD. The differences between 
the experimental groups were analyzed using ANOVA. 
Individual groups were compared using Tukey’s 
multiple comparison tests. P<0.05 was considered 
statistically significant. 

 

Results 
None of the study groups showed any significant 

differences inparameters between control and sham-
operated groups. 

 
Biochemical assays 

The concentration of testicular MDA and SOD, 
CAT,GPx, and caspase-3 activities in studied groups are 
shownin Table 1. There was significant difference in the 
evaluated antioxidant enzyme levels between the T/D 
andcontrol groups. The tissue MDA levels in the

 
 
Table 1.Testicular levels of MDA and CAT, SOD, GPx, and caspase-3 enzyme activities 4 hr after detorsion 
 
 

Grop MDA (nmol g-1 wet issue) CAT (IU g-1 wet tissue) SOD (IU g-1 wettissue) GPx(IU g-1 wet tissue) Caspase-3 activity (ng ml-1) 

 
Control 
 

 
112.15 ± 6.13 

 
364.19 ± 4.94 

 
199.23 ±10.71 

 
741.53±52.26 

 
0.264 ± 0.027 

 
Sham-operated 
 

115.24 ± 21.43 357.62 ± 13.02 1961.39 ± 19.78 713.29 ± 28.98 0.303 ± 0.014 

T/D 
 

194.02 ± 11.15+++ 251.31 ± 16.53+++ 1495.15 ± 25.01+++ 512.24 ± 31.99+++ 0.567 ± 0.021+++ 

Rapa 0.5 mg kg- 163.50 ± 6.42*** 273.24 ± 9.12 1641.14 ±17.21*** 598.49 ± 14.16* 0.470 ± 0.024*** 

Rapa 1 mg kg-1 137.64 ± 5.47***,† 298.42 ± 12.24*,† 1706.49 ±45.47*** 614.10±23.17*** 0.336 ± 0.036***,φφφ 

Rapa 1.5 mg kg-1 121.46 ± 14.15***,††† 324.21 ± 20.63***,† 1881.58±50.34***,††† 641.47±12.54*** 0.315 ± 0.027***,φφφ 

 

T/D, torsion/detorsion; MDA, malondialdehyde; SOD, superoxide dismutase; CAT, catalase; GPx, glutathione peroxidase 

+++P<0.001 compared with the control group 

*P<0.05 compared with the T/D group. ***P<0.001 compared with the T/D group. †P<0.05 compared with group receiving rapamycin at dose 
of 0.5 mg kg-1 
†††P<0.001 compared with groups receiving rapamycin at doses of 0.5 and 1 mg kg-1. φφφP<0.001 compared with group receiving rapamycin 
at dose of 0.5 mg kg-1 
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Table 2.Histological evaluation of the testes using mean 
seminiferous tubular diameter (MSTD) values and Cosentino's 
scores 24 hr after detorsion in the studied rats 
 

Group MSTD (µm) Grade 
 
Control 
 

 
291.4 ± 21.52 

 
1 

Sham-operated 
 

289.3 ± 8.48 1 

T/D 
 

207.0 ± 22.41+++ 3 

Rapa 0.5 mg kg-1 

 
232.8 ± 5.81 2 

Rapa 1 mg kg-1 

 

248.3 ± 19.71***,† 2 

Rapa 1.5 mg kg-1 

 

271.8 ± 22.62***,†††,φ 2 
 

MSTD; mean of seminiferous tubules diameters 
Grades: 1, Minimal or no evidence of injury; 2, Slight injury; 3, Mild 
injury; 4, Moderate injury 
+++P< 0.001 compared with control group 
***P< 0.001 compared with T/D group 
†P<0.05 compared with group receiving rapamycin at dose of 0.5 
mg kg-1 
†††P<0.001 compared with group receiving rapamycin at dose of 
0.5 mg kg_1 
†P<0.05 compared with group receiving rapamycin at dose of 0.5 
mg kg_1 
 

rapamycin injected animals (0.5, 1, and 1.5 mg kg-1, IP) 
weresignificantly lower than T/D animals. These values 
weresignificant between T/D and rapamycin 0.5 mg kg-1, 
rapamycin 0.5 and 1 mg kg-1, and rapamycin 1 and 1.5 mg 
kg-1;P<0.001, P<0.05, and P<0.01, respectively. The 
activity of SOD, CAT, and GPx enzymes in the T/D rats 
significantly increased following injectionof dose-
dependent rapamycin (P<0.001). On theother hand, 
treatment with rapamycin could not completely 
normalize the caspase-3 activity, but dose-dependently 
reduced caspase-3 activity in ischemic/ reperfused tissue 
(P<0.001). 
 

Histopathological analysis 
As expected, the control and sham-operated animals 

(groups 1 and 2) demonstrated a normal architecture 
of the seminiferous tubules and interstitium in 
ipsilateral testes and had intact germinal epithelium 
with an average thickness of cell layers. There were 
some histopathological changes such as degeneration, 
desquamation, and disorganization, reduction in 
germinal cell counts, interstitial edema, and capillary 
Congestion in the testis of rats from the T/D group 
(group 3).These histopathological changes werealso 
present to a similar extent in testis of rats fromgroup 4. 
However, these histopathologicalchanges were 
improved significantly in groups 5 and 6 (Figure 1). 
Table 2 compares the histopathological parameters in 
right testes among the 6 experimental studied groups. 
Significant (P< 0.01) decreases in MSTD and increased 
Cosentino’s scores were observed in the testis of group 
3 compared with the groups 1 and 2 (Table 2). MSTD in 
the testis of groups 4, 5 and 6 was significantly more 
and Cosentino’s score was less than the values in group  

 
 

Figure 1. Histological appearances in ipsilateral testes groups: 
control, sham-operated, T/D, rapamycin 0.5 mg 
Kg-1 + T/D, rapamycin 1 mg kg-1 + T/D and rapamycin 1.5 mg kg-
1 + T/D. Ischemic alterations and 
coagulative necrosis were observed, and the orderly arrangement 
of germ cells was impaired in the T/D group. 
After treatment with rapamycin, spermatogenesis was restarted 
and orderly structure of germ cells with a 
few mature spermatids was observed within seminiferous tubules 
(H&E; magnification × 100) 

 
3. There were differences between groups 4, 5, and 6. 
MSTD in the testis of group 6 was more than groups 4 
and 5. In other words, the administration of different 
doses of rapamycin to rats resulted in an improvement 
in these histopathological parameters dose-dependently 
 
TUNEL assay 

Immunohistochemical studies confirm the index of 
germ cells following TUNEL assay (Figure 2). By double 
labeling, alterations of the anatomical structures and 
proportion of the TUNEL-positive nuclei/surrounding 
normal nuclei (%) were deter-mined. Germ cell 
apoptosis indices were significantly higher in T/D and 
rapamycin groups versus control and sham-operated 
groups; however, rapamycin treatment dose-
dependently reduced the apoptosis in rapamycin 
groups compared with the T/D group. (Table 3). 
 

 
 

Figure 2. Apoptotic nuclei and seminiferous tubules using TUNEL 
assay. Apoptotic germ cells significantly increased following T/D. After 
treatment with rapamycin, especially at dose of 1.5 mg kg-1, apoptosis 
indexand percentage of seminiferous tubules significantly decreased 
and only a few apoptotic nuclei were observed (magnification× 200) 
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Table 3. Apoptotic germ cell index and percentage of apoptotic 
tubules in the rat testes determined using the TUNEL assay 
 
Group Mean apoptotic 

nuclei/tubule 
Apoptotic 
tubules (%)a 

Control 
Sham-operated 

0.73 ± 0.81 12.43 ± 3.071 
16.73 ± 2.429 0.81 ± 0.23 

T/D 9.93 ± 0.76+++ 61.41 ±2.361+++ 
Rapa 0.5 mg kg-1 6.49 ± 4.63 49.21 ± 1.481 
Rapa 1 mg kg-1 5.12 ± 1.42*** 42.37 ± 2.345*** 
Rapa 1.5 mg kg-1 3.21 ± 2.43*** 35.83 ± 2.154***,††† 
 

aThe percentage of tubules in specimens in which at least 1 
TUNEL-stained nucleus is observed. 
+++P< 0.001 compared with control group 
***P< 0.001 compared with T/D group 
†††P< 0.001 compared with group receiving rapamycin at doses of 
0.5 and 1 mg kg-1 

 

Discussion 
Testicular torsion is a medical emergency occurr-

ing primarily in adolescent males and young men 
with an incidence estimated to be as high as 1 in 158 
males by the age of 24 years. Surgical detorsion 
should be done promptly to avoid loss of function of 
the ipsilateral testis. Despite the unequivocal benefit 
of reperfusion of blood to ischemic tissue, reperfu-
sion itself can elicit a cascade of adverse reactions 
that paradoxically injure tissue even with successful 
surgical repair, however, testicular atrophy is                     
a common clinical outcome and is a significant 
urological issue (22). Testicular I/R activates an 
inflammatory signaling pathway which facilitates 
transmigration of neutrophils from endothelium into 
the testis interstitium, ROS over-production, oxide-
tive stress, cellular dysfunction, and promoting 
apoptosis (23, 24). To date, a number of chemicals 
and drugs have been successfully used to reduce the 
I/R injury in animal models of testicular torsion, but 
few of them are currently in clinical use(25-28). 
Rapamycin is a macrolide antibiotic that was initially 
found to have antifungal effects (29). It has been 
used for several years as an FDA-approved immune-
suppressant to prevent graft/tissue rejection after 
transplantation (30). By binding with FKBP-12 
(FK506-binding protein), rapamycin may inhibit 
mTOR and prevent further phosphorylation of P70S6K, 
4E-BP1, and indirectly, other proteins involved in 
transcription, translation, and cell cycle control (31). 
In addition, rapamycin promotes autophagy by 
inhibiting mTOR and is also widely used as an 
autophagy inducer (32). Rapamycin also has 
antitumor effects and inhibits the immune system 
(33, 34).In this study for the first time, we report that 
rapamycin could induce a protective effect against 
I/R injury in the rat testis. It is well established that 
1hr 720o testicular torsion leads to a decrease in 
antioxidant enzyme levels as well as an increase in 
MDA and caspase-3 levels compared to the sham 
operated group when measured 4 hr after 
reperfusion. In addition, germ cell-specific apoptosis 
significantly increases when assessed by the in situ 

TUNEL technique 24 hr after detorsion. Based on our 
study, administration of the specific doses of 
rapamycin significantly decreased the MDA and 
caspase-3 levels and increased the activity of 
antioxidant enzymes in the animals undergoing 
testicular T/D. Furthermore, the germ cell apoptosis 
index and percentage of apoptotic seminiferous 
tubules were significantly reduced following intra-
peritoneal injection of rapamycin. We found that 
rapamycin significantly decreases the oxidative 
stress and our results are also in concurrence with 
the recent reports which concluded that rapamycin 
attenuates cisplatin induced oxidative damage (35) 
and alleviates oxidative stress induced damage in rat 
erythrocytes (29). Beneficial effects of rapamycin 
have been shown in I/R models (36-40). Early 
literature documented its T-cell-independent anti-
inflammatory effects by down regulating TNF-α and 
decreasing neutrophil chemoattractant, in small 
bowl and liver models (39, 40). Its organ protective 
effects were also shown in kidneys and pancreases 
by improving microcirculation post I/R (36, 41). 
Direct cytoprotective effects of rapamycin were 
demonstrated in cardiac infarct models and in vitro 
cell cultures. Rapamycin has been shown to protect 
cardiomyocytes against necrosis and apoptosis 
induced by simulated ischemia and reoxygenation 
(42, 43). The opening of the mitochondrial KATP 
channel and activation of JAK2-Stat3 signaling 
pathway seemed to play key roles (42, 43). Previous 
studies illustrated that testicular I/R can induce 
oxidant/antioxidant imbalance which leads to oxide-
tive stress inflammation and ultimately germ cell 
apoptosis (10). Rapamycin acts through inhibition of 
mTOR, which has been attributed to supporting an 
antioxidant defense system by inducing autophagy. 
Rapamycin induced autophagy ensures the contin-
uous removal of ROS-induced damaged/misfolded 
macromolecules to maintain the protein homeostasis 
and physiological functionality of the cells and 
tissues(44).Several studies have shown that opening 
of mitoKATP channels is one of the common mediators 
of acute and delayed preconditioning, induced by 
both pathophysiological stressors (45-47). Opening 
of mitoKATP during the ischemic post-Conditioning phase 
leads to the generation of (ROS) (48, 49). ROS then 
acts as a second messenger to activate thedown-
stream pathway of protective kinases, including 
protein kinase C and others (50). This small burst of 
ROS generated by the mitoKATP channel prior to 
ischemia acts to prevent the larger, damaging burst 
during reperfusion/reoxygenation (47, 51, 52). It is 
reasonable to speculate that the mitoKATP opening 
property of rapamycin may lead to a reduced level of 
ROS generation during reperfusion/reoxygenation, 
and thus to the protective effects of this drug against 
inflammation, cell necrosis, and apoptosis. Although 
it requires further investigation, there are some 
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explanations of how rapamycin may open 
mitoKATPchannels. First of all, as discussed above, 
rapamycin-induced mTOR inhibition may enhance 
compensatory upregulation of upstream survival 
kinases, such as PI3K and Akt (53, 54). These 
kinases, in turn, are key mediators in the activation 
of mitoKATP channels (50). In addition, it is certainly 
possible that spatial colocalization of mTOR with the 
mitochondria allows for physiological regulation of 
mitochondrial membrane channel activity (55). 
Moreover, as also discussed above, rapamycin may 
upregulate NO and several studies have found that 
NO consequently plays an important role in the 
opening of mitoKATP channels(53, 56). 
 

Conclusion 
We determined that rapamycin treatment before 

reperfusion may have the potential to decrease the 
histologic damage that occurs after testicular torsion. 
It was found that the most effective dose of different 
doses of rapamycin administrated was 1.5 mg kg-1. 
As this drug is used in humans to suppress the 
immune system, we propose that rapamycin may 
have the clinical applicability in patients with torsion 
of the testicle. For this purpose, further clinical 
studies will be needed. 
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