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Candida albicans is an “opportunistic fungal agent” in cancer patients that can become colonized 
in both mucosal and deep tissues and cause severe infections. Most evidence has shown that C. 
albicans can enhance the progress of different cancers by several mechanisms such as generating 
virulence factors, participation in endogenous production of pro-inflammatory mediators, and 
stimulating a wide range of immune cells in the host. The main idea of this review is to describe a 
range of Candida-used mechanisms that are important in candidiasis-associated malignant processes 
and cancer development, particularly breast cancer. This review intends to provide a detailed 
discussion on different regulatory mechanisms of C. albicans that undoubtedly help to open new 
therapeutic horizons of cancer therapy in patients with fungal infection. The current therapeutic 
approach is not fully effective in immunocompromised and cancer patients, and further studies are 
required to find new products with effective antifungal properties and minimal side effects to increase 
the susceptibility of opportunistic fungal infections to conventional antifungal agents. So, in this 
situation, a special therapy should be considered to control the infection and simultaneously have 
the most therapeutic index on tumor patients.

Article history:
Received: Oct 16, 2023
Accepted: Apr 6, 2024

Keywords: 
Breast cancer
Cancer therapy
Candida albicans
Immune responses
Tumor progression

►Please cite this article as:  
Ashrafi S, Amini AA, Karimi P, Bagherian M, Adibzadeh Sereshgi MM, Asgar Halvaei F, Ahmadi Kh, Yazdi MH, Jahantigh HR, Mahdavi M, 
Sarrami Forooshani R. Candidiasis in breast cancer: Tumor progression or not? Iran J Basic Med Sci 2024; 27: 1346-1356. doi: https://dx.doi.
org/10.22038/ijbms.2024.75408.16379

Introduction
Breast cancer is the most common cancer and one of 

the leading causes of death among females worldwide (1). 
Therapeutic interventions like chemotherapy, targeted therapy, 
and immunotherapy may lead to alterations of the immune 
system rendering these patients susceptible to infectious 
complications. Studies have demonstrated that most women 
with breast cancer exhibit a high prevalence of opportunistic 
fungal infection, especially Candida albicans (2). 

C. albicans is a commensal organism living with humans 
responsible for opportunistic infections in immunodeficient 
patients (3). Systemic C. albicans infections may negatively 
affect the outcome of malignancy and produce lengthy 
hospital stays, intensify the economic burden of disease, 
and increase morbidity and mortality (4). In patients with a 

moderately compromised immune system, C. albicans often 
induce mild or superficial infections, however, this fungus 
may also establish life-threatening diseases (5). 

The role of microorganisms in cancer incidence and 
morbidity along with their interactions with the immune 
system and host responses have been explored. However, 
the impact of fungi on carcinogenesis is not clearly 
understood mainly because of their much lower prevalence 
and cumbersome investigation techniques. Interrelation 
of C. albicans to cancer development like colorectal 
carcinogenesis has been shown (6-8). The primary purpose 
of this review is to explore the effects of candidiasis on 
the immune system and tumor cells and highlight some 
recent findings suggesting that C. albicans may have a more 
extensive role in breast cancer status or progression. 
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The host immune response against Candida albicans 
Immunological crosstalk between the host immune 

system and C. albicans is complex and dynamic since the 
pathogen employs various strategies to escape antimicrobial 
immunity (9, 10). Upon initial fungal infection, both innate 
and adaptive immune reactions restrict fungal proliferation 
through various approaches. 

Innate immune response against C. albicans
Candida expresses many pathogen/microbe-associated 

molecular patterns (PAMPs/MAMPs), including N-linked 
mannan, β-glucan, α-mannans, acylated lipoprotein, and 
β-(1-2) oligomannan, which are involved in anti-fungal 
immunity (11). The interplay between PAMPs and pattern 
recognition receptors (PRRs) determines the path of 
inflammation or infection. PRRs activation is accompanied 
by activation of phagocytosis, transcriptional factors, nuclear 
factor kappa-light-chain-enhancer of activated B cells (NF-
κB), activator protein 1 (AP-1), interferon regulatory factors 
(IRFs), CCAAT/enhancer-binding protein beta (C/EBPβ), 
proinflammatory cytokines production, and inflammasome 
activation which trigger inflammatory pathways (12, 13). 

The primary cells that are involved in innate immunity 
against Candida are epithelial and phagocytic cells, including 
polymorphonuclear neutrophils (PMNs), mononuclear 
phagocytes, monocytes/macrophages, dendritic cells 
(DCs), and natural killer cells (NKs) (11). Among them, 
epithelial cells of the skin, urogenital, gastrointestinal, and 
respiratory systems are the first line of host defense. The 
fungus exploits two ways to attack the human host tissues 
and spread to all other regions of the human body: passive 
penetration (endocytosis) and active penetration (14). 
Passive penetration is mediated through the interaction 
of several adhesions of C. albicans including hyphal wall 
protein1 (HWP1), agglutinin-like sequence 1-9 (ALS1-
9), and integrin-like protein 1 (INT1) (15). In contrast, 
active penetration is directly dependent on fungus features 
including touch (thigmotropism), hyphal-induced physical 
pressure, and the secretion of extracellular hydrolases like 
Saps, class B phospholipase (Plb), and lipase (Lip) families 
(16, 17).

The interplay between C. albicans and epithelial 
surfaces encourages signaling pathways like NF-κB and 
biphasic Mitogen-activated protein kinase (MAPK). It has 
been shown that activation of NF-κB, first MAPK phase, 
ERK1/2, and JNK signaling further promote the expression 
of antimicrobial peptides like defensins, cathelicidins, 
and statins (18, 19). The activation of the second MAPK 
phase is dependent on the hyphal form of C. albicans and 
is associated with inducing c-Fos activity that triggers 
the secretion of pro-inflammatory molecules such as IL-
1α/β, IL-6, IL-8, Tumor necrosis factor alpha (TNF-α), 
Granulocyte-macrophage colony-stimulating factor (GM-
CSF), and Granulocyte colony-stimulating factor (G-CSF) 
in vulvovaginal candidiasis (20, 21).

Furthermore, the secretion of some pro-inflammatory 
mediators such as IL-22 leads to immune cell proliferation, 
differentiation, and activation (22). The overexpression of 
IL-22 together with other mediators such as TNF-α and 
IL-17 stimulates the production of the complement system 
components C1r, C1s, and anti-fungal peptides by epithelial 
cells (23, 24). Depending on the type of infection, epithelial 
cells may promote and generate chemokines to call up 
neutrophils towards infectious niches to directly kill Candida 

cells (25). These cells recruit several anti-fungal mechanisms 
to demolish Candida cells including phagocytosis, cytokine 
secretion, granule enzymes production, antimicrobial 
peptides, and oxidative burst; latent of which results in 
the generation of reactive oxygen species (ROS), nitrogen 
intermediates, and myeloperoxidase (MPO) (26, 27). 

The infiltration of neutrophils inhibits C. albicans growth 
and promotes the yeast-to-hyphal transition (9). Urban et 
al. showed that neutrophils are equipped with neutrophil 
extracellular traps (NETs), which can destroy both yeast and 
hyphal forms of the fungus, enabling extracellular killing of 
the microorganism. (28). The bactericidal/permeability-
increasing (BPI) protein, lactoferrin, and defensins are 
among the anti-fungal proteins found in NET granules and 
are involved in pathogen killing (25). 

Monocytes and macrophages are other phagocytic 
cells directly involved in anti-Candida immune responses 
(29, 30). Macrophages utilize a combination of several 
oxidative and non-oxidative anti-fungal mechanisms 
including phagocytosis, antimicrobial peptides, degradative 
enzymes inducing ROS and nitric oxide synthase (iNOS), 
and formation of macrophage extracellular traps (METs) 
to attack the invasive pathogens (31, 32). As professional 
antigen-presenting cells (APCs). DCs also play an essential 
role in regulating immune responses and bridging the 
innate to adaptive anti-fungal immune trajectories (33). 

DCs possess several PRRs enabling them to localize 
infection and activate naïve T cells (34). Furthermore, 
cytokines secreted by DCs lead T cells to differentiate into 
Th1, Th2, Th17, and Tregs. In response to the yeast form 
of the pathogen, DCs are activated and secrete IL-12 which 
promotes Th1 cells, while ingestion of hypha form triggers 
IL-4 production and Th2 differentiation (35). Interestingly, 
Dectin-1 interaction with the yeast form induces IL-17 and 
IL-6 overexpression promoting Th17 cell responses that 
protect cutaneous infection. Filamentous form, in contrast, 
provokes just Th1 differentiation, which is essential for the 
control of systemic infection (36). 

Additionally, the cell wall protein fraction (CPF) of C. 
albicans initiates MHC-II, CD86, and CD40 expression on 
dendritic cells, which indicates DCs maturation (37). Van de 
Veerdonk studied the innate immune mechanisms involved 
in triggering Th17 responses and showed that C. albicans 
mannan, macrophage mannose receptor (MR), and TLR2/
dectin-1 pathway activate and induce IL-17 production 
as a pathogen-specific defense (38). Moreover, it is shown 
that vaccination with recombinant cell surface glycoprotein 
Als3p, a significant component of the hyphal form, induces 
Th1, Th17, and Th1/17 lymphocytes, resulting in decreased 
tissue infectious burden (39). 

NK cells are innate cytotoxic lymphocytes that can directly 
and potentially recognize and phagocytize C. albicans 
cells by releasing molecular contents such as perforin and 
granzymes, causing receptor-mediated apoptosis (40, 41). 
They usually have effective roles in anti-viral and anti-tumor 
immunity as well (42). These cells modulate various innate 
and adaptive immune cells and responses through secretion 
of various pro-inflammatory mediators (43). A study 
showed that NK cells in defense against C. albicans infection 
exhibit different roles depending on the state of host defense 
and immunological context. This study demonstrates that 
NK cells cause hyper/chronic inflammation in candidiasis 
and immunocompetent hosts by stimulating excessive pro-
inflammatory mediators, which may be redundant and even 
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detrimental to host defense and results in the exacerbation 
of infection (44). 

Adaptive immune response against C. albicans 
Adaptive immune responses are mainly carried out 

by two cell types: T lymphocytes and B lymphocytes. T 
lymphocytes are divided into CD8+ cytotoxic cells and 
CD4+ helper (Th) cells, both of which participate in anti-
fungal immunity and their activation is monitored by DC 
subsets that migrate to the local lymph nodes. Activation of 
different subtypes of DCs via distinct signaling pathways can 
shape diverse T-cell responses against Candida infections 
(45, 46). The importance of CD4+ helper T cells is well 
recognized in host defense against Candida infections (47). 
Th1, Th2, Th17, and Tregs, all play pivotal roles in Candida–
specific immune reactions. 

Th2 and Th17 mediated reactions are initiated by 
collaboration of myeloid (inflammatory) dendritic cells 
via TLR-MyD88 pathways, whereas Th1 and T regulatory 
(Treg) cell responses originate in plasmacytoid (tolerogenic) 
dendritic cell interaction via TRIF signaling pathways (48). 
Several inflammatory cytokines including IFN-γ, IL-12, 
IL-1β, IL-2, IL-6, TNF-α, IL-17, IL-21, IL-22, and IL-23 are 
bound to Th1 and Th17 cell mediated immunity (46). In a 
2007 research, it was demonstrated that IFN-γ knockout mice 
show significantly lower surveillance while surveillance rate 
was increased in IL-4, a Th2 cytokine, knockout mice (49). 
This finding indicates a protective role of Th1 and detrimental 
effect of Th2 response, which confirms the importance of 
Th1/Th2 balance against Candida infections (48, 50). 

Notably, another study represented that as with epithelial 
cell responses, various Th phenotypes-specific responses 
against Candida infections are tissue-specific (51). 
Recognition of Candida by PRRs on DCs such as dectin-1 
and dectin-2 promotes Th17 proliferation and development 
(52). On the other hand, Th17 and its related cytokines, 
IL-17 and IL-23, play a crucial role in protective immunity 
and reduce fungal burdens in vaginal candidiasis (53). 
Additionally, Th1‑ and Th17‑associated cytokines, IFN-γ 
and IL-17, can prohibit cancer development, and as a result, 
suppressing these cytokines may increase the risk of cancer 
in the candidiasis tissue environment (54). 

Considering the importance of neutrophils for anti-
fungal immunity, IL-17R deficiency could indirectly affect 

these cells by impairing NK cell functions. Simultaneously, 
GM-CSF not only induces neutrophil migration and 
Candida killing but also stimulates oxidative metabolism 
(55-57). In addition, defects in GM-CSF signaling increase 
the risk of invasive aspergillosis infection, and aligned 
with this finding, GM-CSF treatment could exacerbate 
the fungicidal activity of neutrophils and monocytes and 
improve fungal clearance in the lung (58). 

Treg cells are a subpopulation of CD4+ helper T 
cells, which are involved in controlling inflammation, 
autoimmunity, and hemostasis (59, 60). Tregs can 
potentially exhibit opposite features during infections 
and breast cancer. For instance, they may facilitate tumor 
growth and metastasis by suppressing most immune 
cells including CD4+ and CD8+ T cells, B cells, NK cells, 
and APCs; or enhance microbial clearance and cancer 
improvement through stimulation of immune mechanisms 
(61). Despite the immune-suppressing function of Tregs, 
their role in combatting Candida is controversial. In a report 
of oral Candida infection in mice, Treg cells enhanced 
Th17 differentiation by inducing IL-17 secretion and IL-2 
consumption, which helped fungal clearance (59). However, 
in another study on mouse models, Treg cell depletion or 
IL-10 administration did not result in Th17 cell response 
to Candida in the murine oral epithelium infection (62). 
Nonetheless, the intravenous injection of infection-induced 
Foxp3+ Treg cells in C57BL/6 mice was associated with 
fungal kidney infection (63).  In line with previous findings, 
this study indicated the role of Tregs in Th17 responses but 
showed suppressive effects of these regulatory cells in the 
down-regulation of Th1 and Th2 pathways (59, 62). Also, 
our previous finding showed that C. albicans could induce 
Treg homing in the tumor microenvironment, which led to 
increased tumor growth (64).

Collectively, innate and adaptive immune responses 
consist of a wide range of molecules and receptors that 
communicate with each other in a coordinated manner to 
provide host protection against pathogens. However, our 
knowledge of immune responses against fungal pathogens 
is inadequate and incomplete, and possibly further research 
would help us better understand how immune signals 
interact and how invading fungi hide themselves from 
immune cells and escape from the immune system to 
develop cancer-related processes (Figure 1 and 2).

Figure 1. Th effect of Candida albicans products on the modulation of T cells and induction of suppressor cytokines
CD28: Cluster of Differentiation 28; MHC-II: Major histocompatibility complex-II; TCR: T-cell receptor; TGF-β: Transforming growth factor beta; APC: Antigen-presenting 
cell; ROR-γt: Retinoic acid receptor-γt
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Role of C. albicans in tumorigenesis 
A large body of evidence exists that fungi participate 

in the processes that encourage carcinogenesis and cancer 
progression (65, 66). There are several pathways through 
which, Candida spp. increase the risk of cancer and metastasis 
(67), namely the generation of carcinogenic products 
(nitrosamine, acetaldehyde), inducing inflammation 
(inflammatory mediators, cytokines, and chemokines), 
molecular mimicry, and epigenetic modifications.

Generation of carcinogenic by-products
Nitrosamine 

N-nitroso compounds or nitrosamines are chemical 
carcinogens of nitrogen oxides (e.g., nitrites and nitrates). 
Nitrosamines react with DNA and form adducts with 
phosphate residues that may stimulate the activation of 
specific proto-oncogenes (68, 69). There is much evidence 
linking nitrosamines to the incidence of various types 
of cancer, including colorectal, stomach, esophagus, 
nasopharynx, bladder, and breast (70-73). Studies have 
shown that 4-(methylnitrosamino)-1-(3-pyridyl)-1-
butanone (NNK), the most potent carcinogen among 
tobacco-related nitrosamines, can affect various neoplastic 
processes and increase the risk of developing breast cancer 
by stimulation of estrogen (73). 

Moreover, a study reported that some yeasts like C. albicans 
might have a role in oral cancers through endogenous 
nitrosamine breakdown (74). Invasive esophageal Candida 
infection is also associated with dysplastic alterations in the 
oral epithelium and esophageal squamous cell carcinoma 
(OSCCs) (75-77). Furthermore, among different grades of 
leukoplakia, C. albicans growth was observed only in severe 
dysplastic patients, while there was no growth in mild or 
moderate cases. The evidence demonstrated that C. albicans 
production of nitrosamines might indirectly promote 
cancer progression (78). In addition, the expression of wild-
type BRCA1 suppresses the growth of breast and ovarian 
epithelial tumor cell lines (79). The study by Humphrey et 
al. showed that BRCA1 inhibited yeast growth by several 
mechanisms, and mutations in this gene may promote 
breast cancer progression and yeast dissemination (80). 

Furthermore, previous reports showed that the level of 
active-matrix metalloproteinases (MMPs), especially MMP-
2, could be considered a breast cancer metastasis indicator. 
MMPs are secreted as pro-enzymes, activated by proteolytic 
cleavage, and regulated by a family of inhibitors (i.e., tissue 
inhibitors of matrix metalloproteinases; TIMPs). Previous 

studies showed that TIMP-1 expression is enhanced in 
breast cancer and possibly other types of cancer. In this 
regard, Taheri et al. showed that C. albicans stimulates 
MMP-9 secretion in mice-bearing tumors and seems to 
utilize MMP-9 to degrade the tissue and disseminate. 
Also, they demonstrated that TIMP-1 was increased in the 
presence of infection and tumor. Overall, the results showed 
that candidiasis positively affected tumor progression and 
metastasis. (4, 81). It can be concluded that Candida, by 
alteration of tumor suppressor genes and proto-oncogenes, 
provides a context for tumor initiation and progression.

Alcohol-derived carcinogenic agents
Alongside nitrosamines, Candida takes advantage of 

another pathway to promote carcinogenesis, especially for 
oral carcinoma. C. albicans utilizes the enzyme alcohol 
dehydrogenase (ADH1) to oxidize ethanol of alcoholic 
beverages and some substances such as carbohydrates, 
producing elevated levels of acetaldehyde (ACH) (>100 µM), 
which is highly toxic, mutagenic, and carcinogenic; thus 
indisputably elevates the risk of carcinoma (82). Binding 
to proteins and DNA, acetaldehyde creates abnormal 
chromosomal aberrations, alters molecules’ typical structure 
and function, and induces inflammation by producing 
inflammatory mediators such as NF-κB in the trachea (83). 
Moreover, acetaldehyde triggers mitochondrial damage 
and boosts ROS (84). These established alterations cause 
genome instability, suppression of the apoptotic process, 
proto-oncogene activation, and cell cycle disturbances, 
which may favor tumor progression (85). 

C. albicans could also induce oral epithelial dysplasia (86). 
In an in vitro study, L-2-hydroxyisocaproic acid (HICA), a 
novel antifungal agent, completely inhibited ACH production, 
reducing the mutagenic potential of C. albicans biofilms (87). 
In addition, a study represented that intracellular ethanol 
metabolism to acetaldehyde causes DNA damage, causing 
Fanconi anemia-breast cancer (FA-BRCA) susceptibility 
in alcohol-associated breast and liver cancers (88). Overall, 
it seems that Candida, via production of alcohol-derived 
carcinogenic agents, can stimulate breast cancer.

Heme oxygenase (HO) enzymes 
Hemoglobin (Hb) is considered an iron-containing 

oxygen-carrier metalloprotein (89). Heme oxygenase 
enzymes are found in bacteria, fungi, and mammals. 
C. albicans heme oxygenase gene (CaHMX1) exploits 
extracellular heme or Hb as a significant source of iron to 

Figure 2. Interaction of Candida albicansand antigen presenting cells can modulate T cells response and cytokines pattern
TH: T helper; Treg: Regulatory T cell; STAT: Signal transducer and activator of transcription proteins; Tbet: T-box transcription factor; IFN-γ: Interferon 
gamma-γ; TNF-α: Tumor necrosis factor-α; GM-CSF: Granulocyte-macrophage colony-stimulating factor; GATA-3: GATA binding protein 3; FOXP3: 
Forkhead box protein 3 
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degrade the ferroheme to free iron, biliverdin, and carbon 
monoxide (CO) and allow the fungus to feed on the iron 
to support microbial growth and pathogenesis (90, 91). 
Moreover, when Candida faces iron deprivation, hemin 
induces the Hmx1 gene, sustaining fungal survival and 
virulence (91). 

In addition to hemolytic capacity, Rbt5 and Pga7, two 
extracellular membrane proteins, help the yeast to transfer 
iron from heme and hemoglobin (92, 93). Besides these two 
proteins, in the hyphal form, another member of the Rbt5 
protein family, Csa2, is also involved in iron absorption 
(94). In 1966, it was shown that endogenous CO production 
is correlated with blood heme destruction (95). This study 
showed that CO, despite its poisonous effects, could be 
considered an immune modulator at therapeutic doses. 
Up-regulating Hmx1, Candida can alter the immune 
system. Like human heme oxygenase, Candida Hmx1 could 
produce CO, which leads the immune system toward Th2 
expression by diminishing cellular Th1 immunity and 
weakening antigen presentation. It must be considered that 
Th2 cells facilitate tumor progression. Evidence shows that 
Th2 predominance enables tumor growth in pancreatic 
cancer, and a higher Th2/Th1 lymphocyte ratio could affect 
the survival rate after surgery (95). 

Our previous findings demonstrated that C. albicans 
infection was followed by decreased IFN-γ/IL-4 ratio and 
increased IL-10 and TGF-β, which results in augmented 
tumor growth (95). Although it is expected that Hmx1, by 
shifting immune responses to Th2, might facilitate tumor 
growth, evidence showed the beneficial role of HO-1 in 
blocking breast tumor invasion (96, 97). Other investigations 
also represented HO-1 inhibiting effect on the TPA-induced 
MMP-9 expression and invasiveness with activation of PKC/
ROS/extracellular signal-regulated kinases (ERK) cascade 
in the human breast carcinoma cells (97). Taken together, C. 
albicans can contribute to cancer progression by producing 
HO-1 and its derivatives, but this factor may not be its only 
promoter for cancer development.

Inflammatory response
Interactions between specific PAMPs and PRRs, such 

as TLR2, TLR4, dectin-2, dectin-1, etc., on the surface of 
epithelial and myeloid cells, activate the inflammatory 
cascades by triggering the expression and secretion of a 
broad range of molecules including cytokines, cell growth 
factors, cell adhesion molecules, and immune receptors 
(98, 99). In immunocompromised cancer patients with a 
reduced number of leukocytes and other inflammatory 
mediators, circulating tumor cells can adhere and attach 
to the endothelium instead of leukocytes, which could 
potentially be the first step in creating secondary tumors 
and metastasis (67). 

Inflammatory response of endothelial cells mediates 
high tumor cell adhesion and metastasis after being 
stimulated by C. albicans. Candida recognition by PRRs 
leads to stimulation and activation of multiple intracellular 
signaling pathways including Nuclear factor of activated 
T-cells (NFAT), NF-κB, Mitogen-activated protein kinases 
(MAPK), and extracellular-signal-regulated kinase (ERK), 
which result in the secretion of several cytokines like IL-1, 
IL-2, TNF-α, IL-8, IL-6, IL-10, and IL-12 (11). It is reported 
that Candida infection would interrupt the integrity of gut 
mucosa in the intestinal epithelial cells (IEC) model (100). 
Moreover, many findings indicate the prominent role of the 

MAPK and NF-κB pathways in inducing proinflammatory 
milieu in Candida infection. The extracellular signal-
regulated kinase (Erk) MAPK pathway prevents apoptosis 
of CD8+ T cells by modulating the expression of Bcl-2-
interacting mediator of cell death (BIM), B-cell lymphoma 
2 (BCL-2), and B-cell lymphoma-extra-large (Bcl-XL) 
proteins (101). MKPs play an essential role in innate 
immune responses by negatively regulating MAPK. MKP-
1-/- mice produce hefty amounts of TNF-α, IL-10, IL-1β, 
and IL-6 when challenged with LPS, making them hyper-
responsive to endotoxin shock (102). 

Furthermore, the NF-κB pathway is another important 
route that exerts acute effects on the development and 
function of the immune system (102, 103). For instance, 
Gratacep et al. showed that high-level mucosal infection with 
Candida induces NF-κB activity while low-level infection 
does not affect this pathway in NF-κB activity (104). Also, 
this study demonstrated that only direct contact of the yeast 
to epithelial cells could induce NF-κB (105, 106). 

Numerous studies reported that C. albicans affect cancer 
progression and metastasis through proinflammatory 
pathways in a cytokines-dependent manner and expression 
of adhesion molecules (107). In this regard, in a previous 
study, we have shown that C. albicans infection in the tumor-
bearing mice made a dysregulation in cytokine profiles and 
could facilitate tumor growth and skewed immune responses 
toward Th2 in the breast tumor microenvironment (64). 
Also, several experiments have shown that systemic 
candidiasis is accompanied by augmentation of anti-candida 
Th1-related responses that promote the secretion of various 
cytokines like IFN-γ, TNF-α, TGF-β, IL-6, IL-12, IL-15, 
and IL‑2. In preclinical studies, proinflammatory cytokines, 
such as IL-12, IL-15, and TNF-α, exhibited adjuvant activity 
because they could up-regulate the protective anti-fungal 
Th1 response and block Th2 immune reaction (108). 

On the other hand, an elevated Th17-induced 
inflammatory response may increase pathogenicity 
correlated with C. albicans survival and dissemination in 
the mouse model and impair protective immunity (109). 
Among the proinflammatory cytokines, TNF-α, IL-1β, 
IL-6, IL-8, and colony-stimulating factors (CSFs) are 
essential cytokines involved in the host-Candida interactive 
communication. Although IL-1β and IL-6 play an essential 
role in PMN infiltration, they are not as crucial as TNF-α 
in the anti-fungal innate response. Interestingly, previous 
infection with C. albicans can mediate cancer initiation and 
progression by increasing the final level of TNF-α and IL-18 
(107). 

Additionally, some investigations have suggested that 
TGF‑β restricts the phagocytic capacity of activated 
monocytes-macrophages in C. albicans infection-bearing 
mice and leads to inhibition of IFN-γ-induced nitric oxide 
production, which may facilitate the progression of C. 
albicans infection (110). However, TGF-β plays dual roles in 
tumor environment and normal cells. Researchers argue that 
during the initial stages of tumor outgrowth, TGFβ acts as a 
tumor suppressor, preventing its progression to malignancy 
(111). However, during late-stage human breast tumors, 
TGF-β expression increases, which can exert angiogenic and 
immunosuppressive effects in the tumor microenvironment 
facilitating tumor progression (111, 112). Thus, invasive 
Candida infection in the chronic stages can significantly 
promote the spread of cancer by stimulating the secretion of 
TGF-β as an immunosuppressive agent. 
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In addition to the previously described mechanisms, 
evidence shows the dominant function of CD4+ T-cell 
subsets called Th17 cells, in response to C. albicans (113). 
Th17 cells are a fascinating subset that play significant roles in 
inflammatory diseases and protection against opportunistic 
pathogens and cancer (114). However, the role of IL-17 in 
candidiasis is controversial. Some mouse studies showed a 
potential association of IL-17 and IL-23 with candidiasis, 
but others have failed to find a strong connection (115). 
Most probably, IL-17 plays tissue-specific roles in immunity 
to C. albicans. Anti-Candida activity of IL-17 was first 
shown in 2004. Although Th17 is a directly essential 
cytokine against Candida infection, other Th17-related 
cytokines such as IL-23 showed tumorigenic and metastatic 
properties and influenced the pathogenic potential of Th17 
cells in neoplastic microenvironments (116). Also, cancer 
progression is indirectly promoted by IL-17 via recruiting 
phagocytes, particularly neutrophils (117).

Molecular mimicry
The adhesion profile is considered the first step in 

initial fungal infection that leads to colonization, free 
dissemination, and invasive infections (118). Numerous 
investigations indicated that some C. albicans surface proteins 
such as complement receptor 3-related protein (CR3-RP), 
have structural and antigenic homology with glycoprotein 
CD1lb/CD18 on leukocytes, which are essential agents for 
adhesion of leukocytes to the endothelial cells (119, 120). 
CD1lb/CD18 is found in human neutrophils, monocytes, 
and macrophages. Polyclonal or monoclonal antibodies that 
recognize a subunit of CD1lb/CD18 and target CR3-RP of 
C. albicans may crosstalk with CR3 of leukocytes and impair 
host anti-Candida and anti-tumor immunity. This is called 
molecular mimicry, favoring invasive Candida infection 
and cancer progression (121).

Epigenetic modification 
Existing data suggest that pathogenic fungi can create 

diversity and genome plasticity in response to stressful 
growth conditions by chromosomal variation and increasing 
copy number (122, 123). Among the Candida species, C. 
albicans displays extensive genomic diversity and plasticity 
in the de novo format (123, 124). Asexual mitotic genome 
rearrangements have been identified as the central genomic 
diversity in C. albicans variants (125). Diverse repetitive 
loci of DNA are commonly compressed at ribosomal 
DNA (rDNA) sites, centromeres, and telomeres and are 
assembled into heterochromatin structures and organize 
long repetitive sequences that contribute to genotypic 
phenotypic plasticity (126, 127). There are at least four 
major groups of long repetitive sequences in C. albicans: 
tandem telomeric repeat, long/major tandem sequences 
(MRS), long terminal repeats (LTRs), and ribosomal DNA 
repeats (rDNA) (128-130). These long repetitive sequences 
experience recombination in both inter- and intra-genic 
occurrences that immediately generate long chromosomal 
polymorphisms, chimeric chromosomes, and telomere-
telomere chromosomal fusions (131, 132). 

Heterochromatic regions exert a transcriptionally 
repressive environment that can disseminate over long 
distances (up to 50kb), occasionally silencing native genes 
such as reporter genes inserted at these regions independently 
of the essential DNA sequence (133, 134). Histone modifiers 
can manage the transcriptionally repressive level of 

heterochromatin regions through chromatin modifications. 
In this regard, Sitterlé et al. evaluated the chromatin states 
correlated with DNA repeats in C. albicans. Their results 
indicated that in this species, differential heterochromatin 
states regulate gene expression independently of the DNA 
sequence, and heterochromatin remodeling is associated 
with adaptation in a stress situation (135). Furthermore, 
numerous studies have reported that some non-coding 
RNAs including microRNAs, have a noticeable capacity 
to regulate proto-oncogenes such as PIM-1 (136). Since 
the expression of miRNAs occurs in tissues and a tumor-
specific manner, it seems that some miRNAs are subject to 
epigenetic regulation. 

Circular RNAs (circRNAs) generated during the 
alternative RNA splicing process could promote breast 
cancer cell progression under hypoxia (137). In addition, 
some studies have indicated that circRNAs might also be 
involved in breast cancer proliferation and migration (138). 
On the other hand, defective matches can be established 
in circRNA-miRNA duplex, enabling circRNAs to serve 
as “miRNA sponges” and suppress miRNA-mediated 
degradation of mRNAs (139). Gene ontology (GO) 
enrichment analysis indicates that invasive Candida may 
influence the regulation of respiratory epithelial functions 
by interference in different miRNA expressions and 
alteration of many critical biological pathways (140). Also, 
the results of one study showed that heat-killed C. albicans, 
accompanied by other factors triggering the NF-κB and 
anti-inflammatory cytokines, could induce/inhibit specific 
miRNAs and regulate functions of innate immune cells such 
as macrophages following PRR stimulation (141) (Figure 3).

Therapeutic approaches
Due to the high compatibility and flexibility of C. albicans 

to grow in different host niches, it has been identified as an 
important and prevalent species in cancer incidence and 
development (142). Now, many fungicidal agents/drugs 
have been developed to treat systemic candidiasis infection. 
The most common structural classes of anti-fungal agents 
include polyenes (the oldest class of anti-fungal drugs), 
fluoropyrimidines, echinocandins, and azoles. Each of them 
constitutes several subclasses that pursue different pathways 
to eradicate fungal-related infections (143). The innovation 
of new alternative compounds, alone or in combination with 
other anti-fungal agents can increase anti-fungal capacity 
(144). In this regard, Onyewu and Heitman reported that 
the combination of 4T1 cell lysates and heated C. albicans 
extract, by induction of both innate and adaptive immunity, 
amplified anti-tumor immune responses, enhanced survival 
rates, and reduced tumor volume in the murine model of 
breast cancer (143, 144). 

Comprehensive and exploratory studies evaluated the 
anti-morphogenetic properties of thirty anti-cancer agents 
on the yeast to hyphal form transition of C. albicans and 
provided the possibility of repurposing and designing 
cancer drugs as anti-morphogenetic agents in cancer-
related C. albicans infection (145, 146). A research study 
indicated estrogen antagonist tamoxifen suppressed the 
growth and dissemination of fluconazole (FCZ)- sensitive C. 
albicans isolated from periodontal patients (147). However, 
tamoxifen’s exact mechanism of action as an anti-fungal 
agent is unknown. The drug may be involved in preventing 
pathogenic fungal growth and development by induction 
of calcium-calcineurin signaling pathway and blocking 
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calmodulin signaling (148, 149). 
Many fungal pathogens evolved anti-oxidative factors 

to mediate survival during infection. But, in hypoxic and 
anoxic circumstances, neutrophil’s natural function to 
efficiently generate reactive oxygen species is impaired. To 
this end, studies have shown that disrupting fungal redox 
balance could be a new therapeutic approach for producing 
effective and suitable drugs. Tempol, a redox-cycling 
nitroxide, is an anti-cancer and anti-inflammatory drug 
that has recently been proven to have anti-fungal effects, 
especially in response to systemic C. albicans (150). Besides, 
the repurposing of traditional compounds/drugs for new 
targets can shorten the treatment time and provide rapid 
therapy and novel opportunities to develop de novo anti-
fungal agents (151). 

Although the demand and consumption of fungicidal 
drugs in modern healthcare have increased significantly 
over the last decades, the rate of available therapeutics 
may not meet these demands. From another perspective, 
due to the primal evolutionary relationship between 
fungi and humans, some drugs that have a cytotoxic 
effect on fungi may be deleterious to humans (151, 152). 
Therefore, the use of promising, novel techniques and the 
combination of innovative screening methods with new 
chemical formulations can significantly advance the field 
of personalized drug discovery to counteract fungal and 
invasive Candida infection and subsequently hinder cancer 
progression. 

Conclusion
Innovation in drug development is highly demanded 

to control and eliminate candidiasis in cancer patients 
and consequently prevent cancer progression. However, a 
simultaneous anti-tumor effect should be another property 
of this concern.
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