Sustained neutrophil infiltration and bacterial grain morphology underlie chronic mycetoma pathology in a murine model

Document Type : Original Article

Authors

Department of Immunology, School of Medicine and Dr. Jose Eleuterio Gonzalez University Hospital, Universidad Autonoma de Nuevo León, Monterrey, Mexico

10.22038/ijbms.2025.87349.18875

Abstract

Objective(s): This study aimed to characterize the progression of chronic mycetoma caused by Nocardia brasiliensis in a BALB/c murine model, focusing on the interplay between host cellular immune responses, bacterial burden, and histopathological evolution.
Materials and Methods: BALB/c mice were inoculated with N. brasiliensis in the left hind footpad to establish the mycetoma model. The mice were divided into four experimental groups: 0, 70, 100, and 365 days post-infection (dpi). Lesion volume was assessed throughout the course of infection. At the defined time points, bacterial load (serial dilution method), percentages of immune cell populations (flow cytometry), serum cytokines (interleukins IL-6, IL-10, and IL-12p70, monocyte chemoattractant protein-1 (MCP-1), interferon-gamma (IFN-γ), and tumor necrosis factor (TNF)) via cytometric bead array (CBA), as well as histopathology and bacterial grain morphology (H&E staining), were evaluated.
Results: Chronic mycetoma progression revealed stable bacterial burden and lesion volume stabilization after 70 dpi through 365 dpi. Systemic expansion of CD4+ T cells in the spleen and sustained neutrophil dominance (>90% infiltration) characterized chronic lesions. Progressive tissue necrosis and panniculitis, undetectable by external lesion size, emerged histologically. Serum IL-6 levels surged during chronicity, suggesting a Th17 polarization, contrasting with declining MCP-1. Bacterial grains transitioned from club-shaped to circular over time, suggesting structural grain remodeling.
Conclusion: In chronic experimental mycetoma, the cell response is mainly characterized by neutrophil infiltration, an altered CD4+ T cell response, and dysregulated cytokine production. The shape of bacterial grains continues to change, and the bacterial load remains constant.

Keywords

Main Subjects


1. Zijlstra EE, van de Sande WWJ, Welsh O, Mahgoub ES, Goodfellow M, Fahal AH. Mycetoma: A unique neglected tropical disease. Lancet Infect Dis 2016; 16: 100-112. 
2. Marks M, Vedithi SC, van de Sande WWJ, Levecke B, Solomon AW, Asiedu K, et al. A pathway for skin NTD diagnostic development. PLoS Negl Trop Dis 2024; 18: e0012661. 
3. López-Martínez R, Méndez-Tovar LJ, Bonifaz A, Arenas R, Mayorga J, Welsh O, et al. [Update on the epidemiology of mycetoma in Mexico. A review of 3933 cases]. Gac Med Mex 2013; 149: 586-592. 
4. Abbas M, Scolding PS, Yosif AA, EL Rahman RF, EL-Amin MO, Elbashir MK, et al. The disabling consequences of Mycetoma. PLoS Negl Trop Dis 2018; 12: e0007019-7035. 
5. Odell EW, Segal AW. Killing of pathogens associated with chronic granulomatous disease by the non-oxidative mechanisms of human neutrophils microbicidal. J Med Microbiol 1991; 34: 129-135. 
6. Spargo BJ, Crowe LM, Ionedaf T, Beaman BL, Crowe JH. Cord factor (a,a-trehalose 6,6’-dimycolate) inhibits fusion between phospholipid vesicles. Proc Nati Acad Sci USA 1991; 88: 737-740. 
7. Yano I, Tomiyasu I, Kaneda K, Kato Y, Sumi Y, Kurano S, et al. Isolation of mycolic acid-containing glycolipids in Nocardia rubra and their granuloma forming activity in mice. J Pharmacobiodyn 1987; 10: 113-123. 
8. Kaneda K, Sumi Y, Kurano F, Kato Y, Yano I. Granuloma formation and hemopoiesis induced by C36-48-mycolic acid-containing glycolipids from Nocardia rubra. Infect Immun 1986; 54: 869-875. 
9. Beaman L, Beaman B. The timing of exposure of mononuclear phagocytes to recombinant interferon γ and recombinant tumor necrosis factor α alters interactions with Nocardia asteroides. J Leukoc Biol 1992; 51: 276-281. 
10. Beaman L, Paliescheskey M, Beaman BL. Acid phosphatase stimulation of the growth of Nocardia asteroides and its possible relationship to the modification of lysosomal enzymes in macrophages. Infect Immun 1988; 56: 1652-1654. 
11. Rico G, Ochoa R, Oliva A, Gonzalez-Mendoza A, Walker SM, Ortiz-Ortiz L. Enhanced resistance to Nocardia brasiliensis infection in mice depleted of antigen-specific B cells. J Immunol 1982; 129: 1688-1693. 
12. Deem RL, Doughty FA, Beaman BL. Immunologically specific direct T lymphocyte-mediated killing of Nocardia asteroides. J Immunol 1983; 130: 2401-2406. 
13. Filice GA. Inhibition of Nocardia asteroides by neutrophils. J Infect Dis 1985; 151: 47-56. 
14. Yamate R, Matono T, Yaguchi T, Fujii Y, Goto Y, Tobino K, et al. Disseminated nocardiosis with Nocardia brasiliensis bacteremia in a patient with rheumatoid arthritis using tocilizumab. J Infect Chemother 2019; 25: 552–555. 
15. Beaman BL. Mechanisms for the virulence of Nocardia. In Developments in Plant Pathology. 1994. p. 561-572. 
16. Nasr A, Abushouk A, Hamza A, Siddig E, Fahal AH. Th-1, Th-2 cytokines profile among madurella mycetomatis eumycetoma patients. PLoS Negl Trop Dis 2016; 10: e0004862-4873. 
17. Beaman BL, Beaman L. Nocardia species: Host-parasite relationships. Clin Microbiol Rev 1994; 7: 213-264. 
18. Wong EA, Evans S, Kraus CR, Engelman KD, Maiello P, Flores WJ, et al. IL-10 impairs local immune response in lung granulomas and lymph nodes during early Mycobacterium tuberculosis infection. J Immunol 2020; 204: 644-659. 
19. Sieling PA, Abrams JS, Yamamura M, Salgame P, Bloom BR, Rea TH, et al. Immunosuppressive roles for IL-10 and IL-4 in human infection. In vitro modulation of T cell responses in leprosy. J Immunol 1993; 150: 5501–5510. 
20. Gschwandtner M, Derler R, Midwood KS. More than just attractive: How CCL2 influences myeloid cell behavior beyond chemotaxis. Front Immunol 2019; 10: 2759-2788. 
21. Salinas-Carmona MC. Nocardia brasiliensis: From microbe to human and experimental infections. Microbes Infect 2000; 2: 1373-1381. 
22. García-Hernández M, Castro-Corona MA, Segoviano-Ramírez JC, Brattig NW, Medina-De la Garza CE. Immunomodulatory effect of diethylcarbamazine in mice infected with Nocardia brasiliensis. Int Immunopharmacol 2014; 23: 113–120. 
23. Rosas-Taraco AG, Perez-Liñan AR, Bocanegra-Ibarias P, Perez-Rivera LI, Salinas-Carmona MC. Nocardia brasiliensis induces an immunosuppressive microenvironment that favors chronic infection in BALB/c mice. Infect Immun 2012; 80: 2493–2499. 
24. Salinas-Carmona MC, Torres-Lopez E, Ramos AI, Licon-Trillo A, Gonzalez-Spencer D. Immune response to Nocardia brasiliensis antigens in an experimental model of actinomycetoma in BALB/c mice. Infect Immun 1999; 67: 2428-2432. 
25. Park AJ, Rendini T, Martiniuk F, and Levis WR. Leprosy as a model to understand cancer immunosurveillance and T cell anergy. J Leukoc Biol 2016; 100: 47–54. 
26. Elkington P, Polak ME, Reichmann MT, Leslie A. Understanding the tuberculosis granuloma: The matrix revolutions. Trends Mol Med 2022; 28: 143–154. 
27. Ma F, Hughes TK, Teles RMB, Andrade PR, de Andrade Silva BJ, Plazyo O, et al. The cellular architecture of the antimicrobial response network in human leprosy granulomas. Nat Immunol 2021; 22: 839-850. 
28. Solis-Soto JM, Quintanilla-Rodriguez LE, Meester I, Segoviano-Ramirez JC, Vazquez-Juarez JL, Salinas Carmona MC. In situ detection and distribution of inflammatory cytokines during the course of infection with Nocardia brasiliensis. Histol Histopathol 2008; 23: 573-581. 
29. Romano M, Sironi M, Toniatti C, Polentarutti N, Fruscella P, Ghezzi P, et al. Role of IL-6 and its soluble receptor in induction of chemokines and leukocyte recruitment. Immunity 1997; 6: 315-325. 
30. Gabay C. Interleukin-6 and chronic inflammation. Arthritis Res Ther 2006; 8: S3-9. 
31. Ahmed AA, van de Sande W, Fahal AH. Mycetoma laboratory diagnosis: Review article. PLoS Negl Trop Dis 2017; 11: e0005638-5655. 
32. Guimarães CC, Castro LGM, Sotto MN. Lymphocyte subsets, macrophages and Langerhans cells in actinomycetoma and eumycetoma tissue reaction. Acta Trop 2003; 87: 377-384. 
33. Meester I, Rosas-Taraco AG, Salinas-Carmona MC. Nocardia brasiliensis induces formation of foamy macrophages and dendritic cells in vitro and in vivo. PLoS One 2014; 9: e100064-71. 
34. Trevino-Villarreal JH, Vera-Cabrera L, Valero-Guillén PL, Salinas-Carmona MC. Nocardia brasiliensis cell wall lipids modulate macrophage and dendritic responses that favor development of experimental actinomycetoma in BALB/c mice. Infect Immun 2012; 80: 3587-3601. 
35. Chatterjee S, Biswas N, Datta A, Dey R, Maiti P. Atomic force microscopy in biofilm study. Microscopy 2014; 63: 269-278. 
36. Al Akhrass F, Hachem R, Mohamed JA, Tarrand J, Kontoyiannis DP, Chandra J, et al. Central venous catheter-associated Nocardia bacteremia in cancer patients. Emerg Infect Dis 2011; 17: 1651-1658. 
37. Ali HO, Abraham R, Desoubeaux G, Fahal AH, Tauber C. Evaluation of a computational model for mycetoma-causative agents identification. Trans R Soc Trop Med Hyg 2024; 118: 253-263. 
38. Salinas-Carmona MC, Welsh O, Casillas SM. Enzyme-linked immunosorbent assay for serological diagnosis of Nocardia brasiliensis and clinical correlation with mycetoma infections. J Clin Microbiol 1993; 31: 2901-2906. 
39. Gellatly SL and Hancock REW. Pseudomonas aeruginosa: New insights into pathogenesis and host defenses. Pathog Dis 2013; 67: 159-173. 
40. Scollard DM, Adams LB, Gillis TP, Krahenbuhl JL, Truman RW, Williams DL. The continuing challenges of leprosy. Clin Microbiol Rev 2006; 19: 338-381. 
41. Modlin RL. Th1-Th2 paradigm: Insights from leprosy. J Invest Dermatol 1994; 102: 828-832. 
42. Brady RA, Leid JG, Calhoun JH, Costerton JW, Shirtliff ME. Osteomyelitis and the role of biofilms in chronic infection. FEMS Immunol Med Microbiol 2008; 52: 13-22. 
43. Ulrichs T, Kaufmann SHE. New insights into the function of granulomas in human tuberculosis. J Pathol 2006; 208: 261-269. 
44. Saunte DML, Jemec GBE. Hidradenitis suppurativa: Advances in diagnosis and treatment. JAMA 2017; 318: 2019-2032. 
45. Kauffman KD, Sakai S, Lora NE, Namasivayam S, Baker PJ, Kamenyeva O, et al. PD-1 blockade exacerbates Mycobacterium tuberculosis infection in rhesus macaques. Sci Immunol 2021; 6: eabf3861-3890. 
46. McCaffrey EF, Donato M, Keren L, Chen Z, Delmastro A, Fitzpatrick MB, et al. The immunoregulatory landscape of human tuberculosis granulomas. Nat Immunol 2022; 23: 318-329. 
47. Kaplan JB, Sukhishvili SA, Sailer M, Kridin K, Ramasubbu N. Aggregatibacter actinomycetemcomitans Dispersin B: The quintessential antibiofilm enzyme. Pathogens 2024; 13: 668-694. 
48. Deng W, Lei Y, Tang X, Li D, Liang J, Luo J, et al. DNase inhibits early biofilm formation in Pseudomonas aeruginosa- or Staphylococcus aureus-induced empyema models. Front Cell Infect Microbiol 2022; 12: 917038-917053. 
49. Tanaka T, Narazaki M, Kishimoto T. Il-6 in inflammation, Immunity, And disease. Cold Spring Harb Perspect Biol 2014; 6: 16295-16311. 
50. Nishimoto N. Interleukin-6 in rheumatoid arthritis. Curr Opin Rheumatol 2006; 18:277-281. 
51. Barber DL, Wherry EJ, Masopust D, Zhu B, Allison JP, Sharpe AH, et al. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 2006; 439: 682-687. 
52. Hamilton JA. GM-CSF in inflammation and autoimmunity. Trends Immunol 2002; 23: 403-408. 
53. Odegaard JI, Ricardo-Gonzalez RR, Goforth MH, Morel CR, Subramanian V, Mukundan L, et al. Macrophage-specific PPARγ controls alternative activation and improves insulin resistance. Nature 2007; 447: 1116-1120. 
54. Krieg AM. CpG motifs in bacterial DNA and their immune effects. Annu Rev Immunol 2002; 20: 709-760.