

Advances in cancer immunotherapy: Strategies and innovations strategies for adoptive immunotherapy of cancer

Leila Moeinzadeh ¹, Mohammad-Reza Mahmoudian-Sani ^{2*}, Daryush Purrahman ², Fatemeh Azghadi ³, Mohamad Amin Darbandi ⁴

- ¹ Aryogen Pharmed Biopharmaceutical Research Center, Alborz University of Medical Science, Karaj, Iran
- ² Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur Úniversity of Medical Sciences, Ahvaz, Iran
- ³ Student Research Committee, School of Allied Medical Sciences, Shahroud University of Medical Sciences, Shahroud, Iran
- ⁴ Clinical Research Development Unit, Golestan Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran

ARTICLE INFO

Article type:

Article history:

Received: May 21, 2025 Accepted: Sep 23, 2025

Keywords:

Adoptive cell transfer Bispecific antibodies Chimeric antigen receptor T-cells Immune checkpoint inhibitors Immunotherapy Neoplasm Tumor microenvironment

ABSTRACT

Cancer immunotherapy has emerged as a transformative approach in oncology, offering alternatives beyond traditional treatments. This narrative review focuses on major innovations, including adoptive cell therapy (ACT), chimeric antigen receptor T-cells (CAR-T), T-cell receptor (TCR) engineering, monoclonal antibodies (mAbs), bispecific antibodies (BsAbs), and immune checkpoint inhibitors (ICIs). The central aim of this article is to analyze how these technologies improve antitumor responses and help overcome resistance in hematologic and solid tumors. This narrative review combines the latest findings from clinical and preclinical studies to highlight therapeutic potentials and challenges. Key observations include the clinical success of CAR-T cells in treating blood cancers, the expanding application of ICIs in solid tumors, and the evolving structure-function relationship of BsAbs in recruiting immune effectors. This paper concludes by evaluating the current limitations of these immunotherapeutic strategies and discusses future directions for integrating them into personalized cancer therapy.

► Please cite this article as:

Moeinzadeh L, Mahmoudian-Sani MR, Purrahman D, Azghadi F, Darbandi MA. Advances in cancer immunotherapy: Strategies and innovations strategies for adoptive immunotherapy of cancer. Iran J Basic Med Sci 2025; 28: 1620-1630. doi: https://dx.doi.org/10.22038/ijbms.2025.88384.19090

Introduction

Cancer is one of the leading causes of death and medical burden worldwide in both developed and developing countries (1). This condition is also one of the most critical obstacles to increased life expectancy in the 21st century (2). The causes of cancer are multifactorial, including aging, population growth, and changes in the prevalence of risk factors (3). Late-stage diagnosis, treatment resistance, and metastasis contribute to poor clinical outcomes in many patients (4, 5). Although traditional therapies, such as surgery, chemotherapy, and radiotherapy (Figure 1), have improved survival in some cancers, their effectiveness is often limited by adverse effects, drug resistance, and an inability to control metastatic spread (6). Recent focus has shifted toward understanding the tumor microenvironment (TME), which comprises cancer cells, fibroblasts, endothelial cells (ECs), mesenchymal stem cells (MSCs), and immune components that promote tumor resistance and immune evasion (7). Cancer immunotherapy has emerged as a novel approach that targets the immune system or the TME rather than tumor cells directly (8-10). It utilizes antibodies (Abs), cytokines, dendritic cells, and effector T-cells to activate or restore antitumor immunity (11, 12). However, immune

responses are often suppressed due to inhibitory elements within the TME and tumor-induced T-cell dysfunction (13, 14). Checkpoint inhibitors, such as pembrolizumab, nivolumab, and ipilimumab, have revolutionized the treatment of malignancies, including non-small cell lung cancer (NSCLC) and melanoma, by targeting the programmed cell death protein 1 (PD-1) and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) pathways (15-17). In parallel, vaccines based on peptides, dendritic cells, and oncolytic viruses have also been explored (18-20). Adoptive cell therapy (ACT) involves the ex vivo expansion and reinfusion of Tumor-Infiltrating Lymphocytes (TILs), chimeric antigen receptor T-cells (CAR-T), or chimeric antigen receptor-natural killer cells (CAR-NK). CAR-NK cells have demonstrated high response rates in hematologic cancers (21-23). Despite these advances, challenges such as immune evasion, antigen loss, and therapy-associated toxicity persist (24-28). Recent studies have highlighted the promising role of moronecidin-like peptides (MLP) as immunomodulatory agents. In a murine melanoma model, MLP, combined with an anti-PD-1 antibody, significantly enhanced CD8+ T-cell responses and improved survival compared to monotherapies, demonstrating synergistic effects in overcoming immune resistance (29). Similarly,

*Corresponding author: Mohammad-Reza Mahmoudian-Sani. Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran. Tel: +98-61-33750410, Fax: +98-61-33750427, Email: mohamadsani495@gmail.com, mahmoudiansani-m@ajums.ac.ir

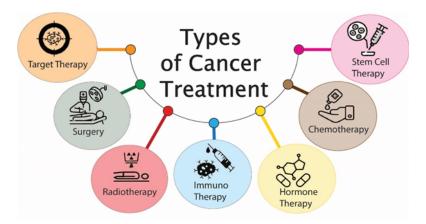


Figure 1. Types of cancer therapy in chronological order from left to right

in a breast cancer model, a synthetic variant of MLP derived from the Hippocampus not only induced tumor cell apoptosis but also stimulated dendritic cell maturation and CD8+ T-cell activation, ultimately reducing tumor burden and prolonging survival (30). These findings support combining immune checkpoint inhibitors (ICIs) with immune-activating peptides to enhance therapeutic efficacy (15-17). Therefore, this review highlights current immunotherapeutic technologies, including CAR-T, CAR-NK, T-cell receptor-modified cells (TCR-modified cells), monoclonal antibodies (mAbs), bispecific antibodies (BsAbs), bispecific T-cell engagers (BiTEs), and ICIs, while discussing their mechanisms, clinical outcomes, challenges, and prospects for combination strategies. The aim is to define their roles in overcoming therapeutic resistance and advancing personalized cancer therapy.

Immunotherapeutic strategies

The concept of biological response modifiers (BRMs) was first introduced in the 1970s to describe agents capable of modulating the immune system to treat cancer, prevent transplant rejection, and alleviate autoimmune diseases (31). BRMs can either stimulate or suppress immune functions, and some possess direct antitumor properties by inhibiting the growth and invasion of cancer cells. There are two main types of BRMs used in cancer biotherapy: specific and non-specific agents. The particular group includes cancer vaccines, ACT, and various forms of Abs, such as mAbs, single-chain variable fragments (scFvs), BsAbs, and BiTEs. These agents typically elicit antigen-specific immune responses or exert direct cytotoxic effects on tumor cells. The non-specific BRMs (nsBRMs) include checkpoint regulators, cytokines, and immunostimulatory adjuvants such as interleukin-2 (IL-2) and interferons (IFNs), which enhance the overall immune activity without targeting specific antigens. These two BRM categories are often combined to improve therapeutic efficacy (Table 1) (11, 32). Despite remarkable progress in cancer immunotherapy, significant obstacles such as tumor recurrence and resistance to treatment remain. For instance, many patients eventually relapse due to immune evasion, antigen loss, or the emergence immunosuppressive tumor microenvironments. Conventional therapies often fail to induce lasting responses in such settings, emphasizing the urgent need for innovative immunotherapeutic interventions. Therefore, identifying novel immune targets and optimizing BRM strategies remain essential for managing patients who are refractory to current therapies or prone to relapse.

Adoptive cell transfer

ACT has shown significant potential in treating advanced cancers that are typically resistant to conventional therapies, and it is rapidly progressing toward becoming a standard of care (SOC) in oncology (33). In recent years, significant advances in cellular immunotherapy have included the use of stimulating or feeder cells to expand effective immune cells such as NK cells and TILs, along with the development of engineered T-cell receptors (TCRs) and CAR T-cells, which are frequently employed in adoptive cell-based therapies to treat a wide range of malignancies (34, 35). GPRC5D-targeted CAR T-cell therapy has demonstrated promising efficacy in relapsed/refractory multiple myeloma, with an overall response rate of 87% and 65% minimal residual disease (MRD) negativity. Common adverse events included anemia, cytokine release syndrome (CRS), and hypocalcemia, supporting its safety and potential as a valuable component of adoptive cell transfer strategies (36).

TIL-based strategy

Despite specifically targeting lymphocytes in the TME, TILs often fail to eliminate tumors due to the presence of immunosuppressive agents in the tumor environment (37). To boost their antitumor activity, researchers have cultured and expanded tumor-derived lymphocytes ex vivo and reinfused them into patients (25). A significant advantage of TIL therapy over other cell-based immunotherapies is that it does not require genetic modification of the cells. Since patients receive their own expanded TILs, these cells can efficiently recognize and destroy tumor cells. Significant progress is still needed to translate TIL therapy into a practical and standardized cancer treatment. The primary TIL populations include T-cells, B-cells, and NK cells. Although TILs have long been observed, their immunological significance and therapeutic potential have only recently been understood, partly due to technological limitations (37). Recent findings suggest that most TILs target mutant self-proteins rather than well-characterized tumor antigens (38). Nonetheless, ex vivo TIL expansion remains problematic, as it is time-consuming and often yields insufficient functional cells for therapy (39, 40).

CAR T-cell-based strategy

Another significant advance in immunotherapy is the CAR T-cell strategy, which involves genetically modifying autologous T-cells to express synthetic receptors targeting extracellular tumor-associated antigens (TAAs) (41).

Unlike traditional T-cell therapies, CAR T-cells do not rely on TCR recognition. Instead, their design enables antigen-specific cytotoxicity, potent in vivo activity, and often requires only a single administration (34). CARs are chimeric receptors composed of an extracellular scFv, a transmembrane domain, a costimulatory domain, and immunoreceptor tyrosine-based activation motifs (ITAMs). While structurally distinct from TCRs, CARs bind TAAs on tumor cell surfaces, including proteins, carbohydrates, and gangliosides, and initiate T-cell activation, proliferation, and cytotoxicity (42). Depending on their intracellular domain design, five generations of CARs have been developed (43, 44). Second-generation CARs incorporating CD28 or 4-1BB domains are widely used in clinical trials targeting CD19-expressing B cells in B-cell malignancies (41). Currently, anti-CD19 CAR T-cells are approved for treating ALL, NHL, and CLL. These therapies may use bulk T-cell populations or separated CD4⁺ and CD8⁺ subsets, most often as autologous infusions after apheresis. The engineered cells are reinfused into the same patient to target tumorexpressed antigens (45, 46). To overcome Graft-Versus-Host Disease (GVHD) and Host Versus Graft Rejection (HVGR), universal or allogeneic CAR T-cells (off-the-shelf) have been developed. These cell lines lack endogenous TCRs and MHC-I, making them broadly applicable in cancer research or infectious disease studies. However, ensuring controlled proliferation, avoiding overactivation, and introducing safety switches remain unresolved challenges (47). Many CAR constructs are currently undergoing phase I/II clinical trials, exploring safety and efficacy in various cancers (48). Notably, CAR T-cells have been combined with checkpoint inhibitors to improve therapeutic outcomes (49). However, manufacturing challenges, especially in elderly or chemotherapy-treated patients, and rapid in vivo differentiation into short-lived effectors, still limit CAR T-cell efficacy (50). FDA-approved CAR T-cell therapies, such as Kymriah®, Yescarta®, Breyanzi®, Abecma®, and Tecartus®, have demonstrated response rates exceeding 80% in B-cell malignancies, including relapsed/refractory ALL, NHL, and multiple myeloma (51-53). Despite these successes, solid tumors pose significant barriers, including TAA heterogeneity, antigen escape, on-target/off-tumor toxicity, and immunosuppressive TMEs (42). Moreover, CRS and neurotoxicity are frequent complications, ranging from mild flu-like symptoms to life-threatening multi-organ failure (54). Limitations in scalability, accessibility, and virus-associated side effects have also restricted the broader use of CAR T cells (46, 55). To address these challenges, novel approaches have emerged:

- Combining CAR T-cells with other anticancer therapies
- Advanced CAR designs with enhanced persistence and reduced toxicity

Using CRISPR/Cas9 gene editing to knock out immune checkpoints, improve cellular fitness, and generate universal allogeneic CARs (56-58). These CRISPR-modified CAR T-cells, which lack TCR and MHC molecules, reduce the risk of GVHD, enhance accessibility, and lower manufacturing costs. They also demonstrate improved survival and function in hostile tumor environments, offering promise for solid tumors that previously resisted conventional CAR T-cell therapy. Together, these innovations position CAR T-cell and CRISPR-based therapies to revolutionize future cancer treatment paradigms.

CAR-NK cell-based strategy

NK cells play crucial roles in limiting cancer progression

and metastasis. In the TME, they regulate both adaptive and innate immunity by secreting pro-inflammatory chemokines, which attract additional NK cells to tumorassociated sites (52). These properties make NK cells appealing candidates for chimeric antigen receptor (CAR) engineering, offering several advantages over CAR T-cells. First, allogeneic NK cells do not cause GvHD. Second, their short lifespan allows potent antitumor activity while limiting long-term side effects such as cytopenia. Third, compared to CAR T-cells, CAR-NK cells are less prone to antigen escape because they also kill tumor cells via their natural cytotoxic receptors (59). Despite the remarkable success of CAR T-cell therapies, significant limitations have prompted the development of alternative platforms. CAR-NK cells retain the anticancer efficacy of CAR T-cells while potentially avoiding many of their toxicities, including CRS and neurotoxicity (Figure 2) (52). In a pivotal study, Liu et al. engineered CAR-NK cells from genetically modified cord blood (CB) that express an anti-CD19 CAR, IL-15 for cell persistence, and an inducible caspase-9 (iCasp9) suicide switch to eliminate the cells in vivo if needed. Their preclinical studies showed potent in vivo lysis of CD19⁺ leukemia cells, prolonged NK cell survival via IL-15 expression, and efficient leukemia clearance following activation of the iCasp9 switch (60). While the development of CAR-NK therapies remains promising, challenges persist with cell isolation, transduction, and expansion. As such, ongoing clinical trials are exploring CAR-NK cells derived from induced pluripotent stem cells (iPSCs) and other progenitor sources (52). For instance, Li et al. generated an iPSC-derived CAR-NK product targeting mesothelin (MSLN), which is highly expressed on several solid tumors (61). Their construct included a 2B4 (CD244) costimulatory domain, CD3\(\zeta\) activation domain, and an NKG2D transmembrane domain, resulting in enhanced tumor cell lysis. CAR-NK cells are being investigated in multiple Phase I trials for various cancers, including ovarian cancer, glioblastoma, NSCLC, AML, ALL, and other B-cell malignancies. Various NK sources have been employed, such as iPSCs, umbilical cord blood (UCB) NK cells, NK-92 cell lines, and autologous peripheral blood NK cells. Although further safety validation in large cohorts is needed, current data suggest that CAR-NK cells elicit fewer severe toxicities than CAR T-cells. This is likely due to the inherent biological differences between NK and T-cells upon CAR activation (62). CAR-NK therapies integrate innate cytotoxicity with precision targeting, providing MHC-independent immunotherapy. Their success depends on optimal receptor design, target selection, and overcoming TME-associated barriers. Combining CAR-NK cells with complementary immunotherapies or adjuvants may be especially effective in metastatic cancers (63). As research advances, CAR-NK cells represent a powerful next-generation platform, supported by advancements in gene editing and NK cell homing that enhance their therapeutic potential. Preclinical and early clinical results further endorse their promise as alternatives or complements to CAR T-cell therapy (64).

Monoclonal antibodies

For over two centuries, immunization and antibody-based therapies have played a crucial role in advancing medicine, greatly improving global health. Abs are vital parts of the adaptive immune system, involved in recognizing and neutralizing pathogenic and foreign antigens (65). Although

BsAbs are increasingly used in modern immunotherapies, most Ab engineering strategies still preserve the IgG architecture (66). mAbs, which are designed to target a single antigen or tumor-associated growth factor, represent one of the earliest immunotherapeutic tools for cancer. However, their efficacy is often compromised due to immune evasion by tumor cells, leading to resistance. To overcome these limitations, strategies such as combining TAAs with antigen-inexperienced T cells have been proposed (67). mAbs are produced in large quantities for both diagnostic and therapeutic applications (68). In cancer therapy, they can bind to tumor cells and either inhibit their growth, induce apoptosis, or prevent metastasis. They can also be conjugated with drugs, toxins, radioisotopes, cytokines, or other active agents for targeted delivery (11). Additionally, mAbs are often administered alongside chemotherapy to enhance therapeutic outcomes. mAbs are widely used across multiple fields, including anti-thrombotic therapy, antiviral treatment, autoimmune disease management, and oncology. In cancer, specifically, several mAbs have been approved by the US Food and Drug Administration (FDA) (11). Adalimumab, the first mAb derived from phage display, was approved for treating autoimmune diseases (69). Bevacizumab, a humanized anti-VEGF mAb, is used to treat glioblastoma, NSCLC, and metastatic renal cell carcinoma (70). Cetuximab, a chimeric human-mouse mAb targeting the epidermal growth factor receptor (EGFR), is approved for the treatment of colorectal and head and neck cancers (71). Despite their enormous therapeutic potential, mAbs are inherently limited by their single-target specificity, whereas many cancers involve multiple signaling pathways (72). In solid tumors, acquired resistance often results from genetic mutations that alter cell phenotypes, thereby diminishing the efficacy of mAbs (73). Additionally, high interstitial fluid pressure in the TME acts as a physical barrier, reducing the penetration of large macromolecules, such as mAbs (74). As a result, peripheral tumor zones may receive subtherapeutic concentrations, leading to treatment failure and resistance development (75). Therapeutic mAbs are increasingly used to target tumor cells precisely, thereby reducing the systemic toxicity typically associated with chemotherapy (76, 77). Nevertheless, due to their limited efficacy as monotherapies, mAbs are commonly used in combination with chemotherapy (75). Researchers continue to develop novel mAbs targeting surface antigens on brain, lung, breast, ovarian, prostate, colon, and hematologic tumors, including leukemia, lymphoma, and melanoma

(11). Currently, more than 500 mAbs are approved or under clinical investigation for autoimmune, hematologic, and malignant disorders, including both solid and hematologic cancers (75, 78). Ultimately, molecularly targeted therapies, particularly mAbs, are at the forefront of precision oncology, offering advantages over traditional treatments by selectively inhibiting critical signaling pathways. These strategies help reduce toxicity and circumvent resistance mechanisms (79).

Bispecific antibodies

BsAbs are engineered molecules designed to recognize and bind two distinct antigens or epitopes simultaneously. This dual specificity enables BsAbs to either block multiple oncogenic pathways or redirect immune effector cells to tumor sites (80, 81). Their structural diversity and functional versatility have made them highly attractive in the field of oncology. BsAbs can be broadly categorized into Fc-containing (IgG-like) and Fc-free formats. Fcfree constructs such as scFvs, diabodies, triabodies, and tetrabodies formed by linking VH and VL regions with flexible peptide linkers offer superior tumor penetration but suffer from rapid clearance due to short half-lives. In contrast, Fc-containing BsAbs, such as triomAbs, retain Fc-mediated effector functions and benefit from prolonged serum persistence through Fcy receptor engagement (82-85). The development of BsAbs has progressed through chemical recombination of mAbs and the fusion of hybridomas to create quadromas, which secrete dual-specific antibodies (86). Modern strategies employ recombinant technology (rAbs), enabling efficient production and greater design flexibility (80). Platforms like phage display have further accelerated the generation of large Ab fragment libraries targeting specific tumor-associated antigens (87). BsAbs provide multiple therapeutic advantages. They offer enhanced specificity through simultaneous binding to two TAAs, which minimizes off-target binding (88). Dual pathway inhibition prevents redundancy-driven resistance by blocking multiple signaling routes (81, 88). They also recruit immune effectors, such as T cells and NK cells, to tumor sites to amplify cytotoxic responses (89, 90). By modulating two functional axes, BsAbs help delay or prevent tumor escape mechanisms (90). Their design flexibility supports crossing the blood-brain barrier, extending serum half-life, and enabling pre-targeting strategies (81, 88). From a manufacturing perspective, BsAbs improve production efficiency by reducing time, cost, and ethical concerns compared to dual mAb therapies (91, 92). BsAbs redirect

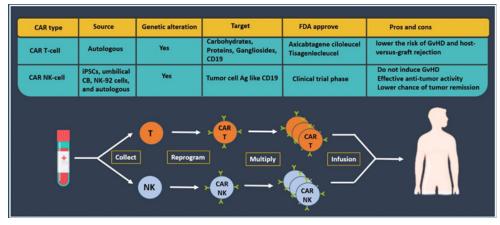


Figure 2. Compression between CAR T-cell and CAR NK-cell

immune effectors via MHC-independent mechanisms, typically by binding CD3 on T cells and a second TAA such as CD19, CD20, CD33, CD123, EpCAM, or HER2, thereby forming a cytolytic immune synapse (89, 93, 94). This approach has proven particularly effective in hematologic malignancies, such as leukemia and lymphoma, where BsAbs demonstrate high efficacy due to the accessibility of circulating tumor cells (95). Despite their promise, BsAbs face several limitations and challenges. Fc-free molecules, such as BiTEs, exhibit short half-lives, requiring continuous infusion (96). Steric hindrance may restrict access to epitopes in solid tumors, and immunogenicity, aggregation, low expression yields, and reduced stability can hinder clinical application (89). Specificity remains critical, as many TAAs (e.g., CD33, HER2, CEA) are also expressed, albeit at lower levels, in normal tissues, which increases the risk of on-target/off-tumor toxicity (97, 98). BiTEs are a subclass of BsAbs composed of two scFvs, one targeting CD3 on T cells and the other a TAA on tumor cells. This structure forms a cytolytic synapse, activating T cells and triggering the release of perforin and granzyme B to induce apoptosis. Notably, this occurs independently of MHC, TCR specificity, or costimulatory signals, making BiTEs effective even in immune-evasive tumor environments (80, 99, 100). Multiple BsAbs have received FDA approval, including Blinatumomab (CD19/CD3), Amivantamab (EGFR/MET), Teclistamab-cqyv (BCMA/ CD3), Epcoritamab (CD20/CD3), and Tebentafusp (gp100/ CD3) (101). Although Catumaxomab (EpCAM/CD3) was approved earlier, it was later withdrawn due to commercial reasons; however, it played a crucial role in validating BsAb therapeutic concepts (102). Among hematologic malignancies, such as ALL and DLBCL, blinatumomab has demonstrated robust efficacy through polyclonal T cell redirection (103, 104). However, BsAbs, especially BiTEs, can induce immune-related toxicities, such as CRS, neurotoxicity, and hypersensitivity reactions (105-108). CRS, characterized by elevated cytokines (e.g., IL-6 and TNF-α), may require corticosteroids or tocilizumab. Other side effects include cytopenias, liver toxicity, and infection risks, underscoring the need for optimal dosing and careful TAA selection. Looking forward, next-generation BsAbs are being developed with extended half-lives, improved tumor selectivity, and immune modulation capabilities. Delivery systems such as BsAb-expressing MSCs are under investigation to target therapy and reduce systemic exposure (109, 110). Additionally, combining BsAbs with ICIs or tumor-penetrating peptides, such as moronecidin-like agents, may overcome resistance and expand therapeutic potential, particularly in solid tumors.

Immune checkpoint therapy

ICIs are a class of mAbs that potentiate T-cell-mediated antitumor responses by blocking inhibitory receptors or their ligands, notably cytotoxic CTLA-4, programmed death-1 (PD-1), and programmed death ligand-1 (PD-L1) (111). Their introduction has significantly reshaped the therapeutic landscape of several malignancies, including melanoma, NSCLC, and renal cell carcinoma (112, 113). These checkpoints serve as immunological "brakes" that tumors exploit to evade immune destruction. By inhibiting these pathways, ICIs restore T-cell activity against malignant cells. However, a substantial proportion of patients fail to respond due to primary or acquired resistance, stemming

from mechanisms such as poor tumor immunogenicity, absence of TILs, or compensatory activation of alternative immune checkpoints (114). Moreover, ICIs can lead to immune-related adverse events (irAEs), including colitis, hepatitis, endocrinopathies, and pneumonitis, which can limit their clinical applicability (115). Several factors, including tumor mutational burden, gut microbiota, and host genetics, influence response heterogeneity. To date, over 100 ICIs have entered clinical development or received regulatory approval (116). Notable agents include anti-PD-1 antibodies (e.g., nivolumab and pembrolizumab), anti-PD-L1 antibodies (e.g., atezolizumab, avelumab, durvalumab), and combination regimens such as nivolumab plus ipilimumab, which have demonstrated superior efficacy in some cancers but at the cost of increased toxicity (117). Cadonilimab (AK104) represents an emerging bispecific antibody that simultaneously targets PD-1 and CTLA-4, offering enhanced dual checkpoint blockade within a single molecule (118). This engineered approach may balance immune activation and toxicity by modulating binding affinity and Fc-effector functions. Preclinical and clinical findings indicate that Cadonilimab can overcome resistance observed with monotherapies, providing sustained immune activation with an acceptable safety profile. Checkpoint blockade has undoubtedly revolutionized immunotherapy. However, limitations remain in terms of variable patient responses, toxicity management, and the development of predictive biomarkers (119).

CTLA-4 therapy hindering T-cell costimulatory signal

CTLA-4 is a critical immune checkpoint expressed on activated T cells, T regulatory cells (Tregs), and B cells, acting as a negative regulator of T-cell activation by binding to CD80 and CD86 on antigen-presenting cells. This interaction competes with the costimulatory receptor CD28, thereby attenuating T-cell responses (120, 121). Blocking CTLA-4 restores effective costimulatory signaling and promotes antitumor immunity. Emerging evidence also implicates antibody-dependent cellular cytotoxicity (ADCC) in selectively depleting intra-tumoral Tregs, contributing to the therapeutic effects of anti-CTLA-4 antibodies (122). Ipilimumab, the first FDA-approved CTLA-4 inhibitor, demonstrated a significant survival advantage in metastatic melanoma, marking a pivotal advancement in immunotherapy (75). By antagonizing CTLA-4, ipilimumab enhances T-cell activation, suppresses Tregs, and augments the recognition of TAAs. Clinical trials, including a phase II study in NSCLC, have confirmed its efficacy (40). Beyond melanoma, CTLA-4 blockade is under investigation across multiple tumor types. For instance, in metaplastic breast cancer, dual therapy with anti-PD-1 and anti-CTLA-4 antibodies produced an overall response rate (ORR) of 12%, with a 12-month median overall survival in ongoing phase II trials (123). Mechanistically, CTLA-4 inhibition activates CD8+ effector T cells and diminishes Treg-mediated immunosuppression, thereby fostering robust antitumor responses. Additional molecules, such as soluble CTLA-4, may further influence therapeutic outcomes and warrant consideration as potential biomarkers (124). In summary, CTLA-4-targeting ICIs exert multifaceted effects on the immune landscape, offering substantial benefit in selected patients. Their optimal use requires an understanding of immune contexture, resistance mechanisms, and combination strategies to achieve durable responses.

PD-1/PD-L1 therapy hindering TCR signaling

The PD-1 receptor and its ligands, PD-L1 and PD-L2, constitute a crucial immune checkpoint pathway that regulates T-cell activation, peripheral tolerance, and exhaustion (125). Tumor cells often exploit this axis by overexpressing PD-L1, thereby suppressing the activity of cytotoxic T lymphocytes (CTLs) and evading immune surveillance (126). Upon PD-1 engagement, SHP-2 phosphatase is recruited to its cytoplasmic ITSM domain, leading to the dephosphorylation of TCR signaling molecules such as CD3ζ and ZAP70, which attenuates TCR signaling and cytokine production (127). Consequently, effector T cells within the TME become functionally inactivated or "exhausted". Multiple downstream signaling cascades are disrupted through PD-1 activation, including the PI3K/Akt, MAPK/ERK, and JAK/STAT pathways (128). These changes impair glucose metabolism, cell proliferation, and cytokine gene transcription, ultimately diminishing antitumor immunity. Resistance to anti-PD-1/PD-L1 therapy may arise from intrinsic tumor factors, such as PTEN loss, β -catenin signaling, and VEGF-mediated immune exclusion, as well as from adaptive feedback, in which inflammatory cytokines, like IFN-γ, up-regulate PD-L1, thereby reinforcing immunosuppression (129). Mechanistically, after antigen presentation via MHC-TCR interaction, tumor-infiltrating T cells release IFN-γ, which further induces PD-L1 expression on tumor and stromal cells (130, 131). This creates a negative feedback loop, limiting T-cell function in the TME (132). PD-1 contains ITIM and ITSM motifs that, once phosphorylated, recruit SHP-2 to inhibit key signaling molecules. This suppresses IL-2 secretion, glucose uptake, and cell survival pathways (133), rendering effector T cells less capable of mediating cytotoxicity (134, 135). Significantly, PD-1/PD-L1 engagement also contributes to immune tolerance by promoting the differentiation of naïve CD4+ T cells into FOXP3+ regulatory T cells, independent of TGF-β, as shown in both in vivo and in vivo models (111, 136). This dual mechanism directs T-cell inhibition and Treg induction, thereby reinforcing immune escape and tumor progression. Clinical studies have validated the therapeutic benefit of PD-1/PD-L1 blockade in malignancies such as metastatic melanoma, NSCLC, renal cell carcinoma, bladder, and head and neck cancers (137, 138). Anti-PD-1 agents (nivolumab, pembrolizumab) and anti-PD-L1 agents (atezolizumab, durvalumab, avelumab) have all received regulatory approval for various indications (139). These agents have shown improved overall survival and durable responses, often outperforming conventional therapies with a more favorable toxicity profile compared to CTLA-4 inhibitors (120, 140, 141). Despite these successes, not all patients respond to treatment. Hence, combination therapies are under investigation. For example, PD-1/ PD-L1 blockade has been shown to re-sensitize tumors to BiTE therapies, such as AMG330 (anti-CD33×CD3), by restoring T-cell cytotoxicity (126, 127). Additionally, dual treatment with checkpoint inhibitors and BsAbs has demonstrated enhanced efficacy in colorectal cancer and B-cell lymphoma, as evidenced by increased immune activation and tumor regression in preclinical and early clinical trials (128, 129, 142). Combining PD-1/PD-L1 inhibitors with radiation, chemotherapy, or T-cell engagers (e.g., anti-CEA×CD3) offers a promising strategy to remodel the TME, reduce MDSCs, and enhance infiltration of TILs (115, 116). Furthermore, novel anti-PD-L1 agents, such as atezolizumab and durvalumab, have been engineered with Fc-silent mutations to minimize complement-dependent cytotoxicity (CDC) and ADCC, thereby improving their

safety profiles (143). Ongoing clinical trials are exploring innovative combinations, personalized biomarker strategies (e.g., PD-L1 expression, TIL density), and next-generation ICIs to overcome resistance and broaden patient benefit (125, 144). Ultimately, targeting the PD-1/PD-L1 axis remains a cornerstone of immuno-oncology, with continued refinements poised to enhance therapeutic efficacy across malignancies.

Bispecific T-cell engager

BiTEs are recombinant, engineered proteins designed to physically link CTLs to tumor cells, thereby promoting direct immune-mediated tumor destruction. These molecules typically consist of scFvs: one that recognizes CD3 on T cells and the other that targets a TAA on cancer cells. In an innovative approach, a novel CD3/PD-L1 BiTE was developed by genetically fusing the VL and VH chains of an anti-PD-L1 antibody to those of an anti-CD3 antibody. This format facilitates the redirection of T cells, including CD8+, CD4+, and CD3+ NKT cells, as well as L1 PD-L1-expressing tumor cells, thereby overcoming PD-1 axis-mediated immunosuppression. In vivo experiments demonstrated the robust and selective activation of healthy donor-derived T cells, suggesting that this CD3/PD-L1 BiTE may serve as a potent immune activator in patients with PD-L1-positive solid tumors. Notably, its most excellent efficacy was observed when combined with immunotherapeutic agents that do not directly counteract PD-1-mediated immune inhibition (145). This bispecific construct holds promise not only due to its ability to bypass immune evasion mechanisms but also because it bridges the immunological synapse between T cells and tumor cells, facilitating efficient tumor cell killing. Since not all tumor cells uniformly express PD-L1, the synergy of BiTEs with checkpoint inhibitors or other immunotherapies can broaden their therapeutic utility. Among FDA-approved BiTEs, blinatumomab is a wellestablished prototype that simultaneously targets CD19 on B cells and CD3 on T cells. It effectively mediates B-cell lysis in ALL through T-cell redirection (146, 147). Similarly, teclistamab targets B-cell maturation antigen (BCMA) on myeloma cells and CD3 on T cells, demonstrating potent efficacy in relapsed/refractory multiple myeloma (RRMM) (148-150). Another example, Tebentafusp, utilizes a TCR-like molecule that recognizes gp100, a melanomaassociated antigen, and is linked to an anti-CD3 scFv. This construct enhances antigen-specific recognition and lysis of gp100-expressing melanoma cells (151). Despite their therapeutic potential, BiTEs and other BsAbs present notable risks, including CRS, neurotoxicity, and on-target/ off-tumor effects. These toxicities necessitate vigilant clinical monitoring, dose optimization, and supportive care to mitigate adverse events (152). Nevertheless, with proper management, BiTEs remain a transformative class of agents in T cell-redirecting immunotherapies, capable of overcoming immune resistance and broadening cancer treatment options.

Toxicity associated with BiTE

CRS is one of the most common and severe side effects related to BiTE therapy. It results from the rapid release of cytokines by activated T cells. Symptoms can range from mild, flu-like signs to severe reactions, including high fever, hypotension, and organ dysfunction. Neurological side effects may also occur, such as confusion, seizures, or encephalopathy. Depending on severity, these conditions require close monitoring and proper management. Infections and bleeding can occur due to cytopenia associated

with BiTE therapy, including thrombocytopenia and neutropenia. Patients may also experience hypersensitivity reactions, ranging from mild rashes to severe anaphylaxis. The specific BiTE agent and the cancer type being treated can lead to organ-specific toxicities, such as liver toxicity or pulmonary complications (105-107). Close monitoring of vital signs and laboratory parameters is crucial, especially during the early phases of treatment. Supportive care includes hydration and antipyretics. In severe cases of CRS or neurological toxicity, corticosteroids may help diminish the inflammatory response. An IL-6 receptor antagonist, tocilizumab, can counteract cytokine release in severe CRS.

Cancer resistance to adoptive immunotherapy

Immune-related resistance remains one of the major obstacles in cancer treatment. This resistance arises from various factors, including host-related, tumor-intrinsic, and TME variables. Tumor-intrinsic mechanisms involve disruptions in antigen presentation pathways, such as the proteasome, transporters, and MHC, as well as alterations in antitumor immune response pathways, including

aberrant production of tumor antigens. Additionally, tumor cells within an immunosuppressive TME release inhibitory molecules like PD-L1 and exhibit functional genetic mutations in key pathways such as PTEN/PI3K, ČDK4-CDK6, MAPK, EGFR, and KRAS. Metabolic modifications also contribute to resistance, including hypoxia, IDO activity, and the production of adenosine. Alterations in signaling pathways, such as the interferon-y pathway, further promote immune evasion. In the TME, suppressive immune cells and molecules, including MDSCs, Tregs, TAMs, PD-L1, and CTLA-4, as well as abnormal neovascularization, collectively contribute to resistance. Host-related factors, such as gender, age, body fat composition, and gut microbiota, also influence treatment resistance. Resistance is categorized into three types: Primary resistance (no response from the start), Adaptive resistance (emerges during therapy), and Acquired resistance (relapse after an initial response). Overcoming these challenges requires the identification of predictive biomarkers, the development of personalized treatment strategies, and combination therapies that target multiple resistance pathways (153-156).

Table 1. Comparison of characteristics between ICI, CAR T-CELL, and BiTE therapy (157-159)

	ICI	CAR T-CELL	BiTE
Structure	Monoclonal antibody targeting	A synthetic T cell construct encoding a scFv against a tumor	A recombinant protein composed of two linked
	the immune checkpoint protein	antigen linked to activation and costimulatory motifs	scFvs; one binds to CD3 on T cells and the other
			to target a tumor antigen on tumor cells
Antitumor mechanisms	Blocking the inhibitory immune checkpoint	Inducing tumor cell lysis by the formation of immune	Inducing tumor cell lysis by the formation of
	proteins that result in cytotoxic T cell-	synapses between T cells and tumor cells	immune synapses between T cells and tumor cel
	mediated immune response and restoring		
	immune system function		
Recruitment of T cells	Passive, acting on tumor-infiltrating and	Active, redirecting engineered T cells outside of the	Passive, dependent on endogenous T cells, and
	endogenous T cells to kill tumor cells	body to kill tumor cells	redirecting them to kill tumor cells
Production and availability	Hybridoma technology is readily available for	Genetically engineering a patient's T cells outside the	Genetically engineered and purified from
	all patients, providing immediate ("off-the-	body, individualized for each patient, is a time-	mammalian cell lines, it is effective for all patient
	shelf") benefits	consuming process (weeks for autologous CAR-T cells)	and is immediately available, making it readily
			accessible ("off-the-shelf")
Indications	Mainly in solid tumors, with approval in a	All in hematologic neoplasms	All in hematologic neoplasms and some solid tumor
	small part of hematologic neoplasms		
Toxicity	Hyperactivation and Hypersensitivity	CRS, neurotoxicity	CRS, neurotoxicity
Advantages	Broad-spectrum antitumor activity,	MHC-independent, TCR-independent, endogenous T	MHC-independent, TCR-independent, relatively
	easy production	cell-independent	easy production, tumor-infiltrating T cell-
			independent
Disadvantages	Tumor-infiltrating T cell-dependent,	Lack of efficacy for solid tumors, long-term and	Antigen-dependent, continuous
	immune checkpoint expression-dependent,	complex production, antigen-dependent, on-target off-	administration due to a short half-life, on-target
	MHC-dependent, TCR-dependent, drug	tumor effects, and targeting multiple antigens.	off-tumor effects
	resistance		
MHC Dependent	YES	NO	NO
CD3 engagement	Variable	scFv-CD3ζ	scFv-CD3ε
Tumor penetration	Better with small molecules	Worse	Better with small molecules
Half-life	Variable	It might be extended with memory immunity (even	Variable (short)
		years)	
Effector cell	Variable	ex vivo engineered CD8+ and CD4+ T cells	Unmanipulated T cells (Endogenous CD8+ and
			CD4+ T cells)
Dosing	Repeat dosing	Single infusion ("one-shot")	Repeat dosing
FDA approval	Ipilimumab (CTLA-4),	Tisagenlecleucel (CD19),	Catumaxomab (EpCAM), Blinatumomab
	Nivolumab (PD-1),	Idecabtagene Vicleucel (BCMA),	(CD19),
	Atezolizumab (PD-L1),	Ciltacabtagene Autoleucel (BCMA)	Tebentafusp (gp100 peptide-HLA)
	Avelumab (PD-L1)		

ICI: immune checkpoint inhibitor, CAR: chimeric antigen receptor, BiTE: bispecific T cell engager, CRS: cytokine release syndrome, MHC: major histocompatibility complex, TCR: T-cell receptor, scFv: single-chain fragment variable; EpCAM: Epithelial cell adhesion molecule

Conclusion

Recent advances in immunotherapeutic modalities, including BsAbs, ICIs, ACT, and cancer vaccines, have significantly transformed the cancer treatment paradigm. Each strategy contributes distinct advantages in enhancing antitumor immunity. However, challenges such as immune evasion, treatment resistance, toxicity, and patient heterogeneity persist, hindering long-term efficacy. Dualtargeting constructs, such as bispecific formats and agents like Cadonilimab, offer promise by enhancing immune activation while reducing overlapping toxicities. However, no single strategy has demonstrated universal effectiveness. As a result, future directions will depend on rational combination therapies. These may include ICIs integrated with tumor-targeted peptides (e.g., moronecidin-like agents), CAR-T cells combined with checkpoint inhibitors, or BsAbs used in conjunction with personalized tumor vaccines. Furthermore, identifying predictive biomarkers, improving drug delivery systems, and modulating TME will be essential for optimizing outcomes. Ultimately, a deeper mechanistic understanding of immune tumor interactions, alongside the design of tailored immunotherapeutic platforms, holds the key to achieving durable clinical responses and expanding the benefits of immunotherapy across diverse patient populations.

Acknowledgment

The authors thank the Vice Chancellor of Research Affairs at Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.

Authors' Contribution

L M, M M S, F A, M A D, and D P prepared a draft. M M S and L M edited the manuscript. All authors have read and approved the latest version of the article.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Declaration

This manuscript was developed with the help of generative artificial intelligence tools. Specifically, the latest version of OpenAI's ChatGPT was used to improve language, refine the text, and generate summaries. These tools were only used to enhance the manuscript's clarity, coherence, and readability.

Funding

This research did not receive a specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

References

- 1. Zhang C-L, Huang T, Wu B-L, He W-X, Liu D. Stem cells in cancer therapy: Opportunities and challenges. Oncotarget 2017; 8:75756-75766.
- 2. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68:394-424.
- 3. Oh C-M, Won Y-J, Jung K-W, Kong H-J, Cho H, Lee J-K, *et al.* Cancer statistics in Korea: Incidence, mortality, survival, and prevalence in 2013. Cancer Res Treat 2016; 48:436-450.
- 4. Colak S, Medema JP. Cancer stem cells-important players in tumor therapy resistance. FEBS J 2014; 281:4779-4791.

- 5. Wang J, Zheng Y, Zhao M. Exosome-based cancer therapy: Implication for targeting cancer stem cells. Front Pharmacol. 2017; 7:533-543.
- 6. Huehls AM, Coupet TA, Sentman CL. Bispecific T-cell engagers for cancer immunotherapy. Immunol Cell Biol 2015; 93:290-296.
- 7. Lee HY, Hong IS. Double-edged sword of mesenchymal stem cells: cancer-promoting versus therapeutic potential. Cancer science 2017; 108:1939-1946.
- 8. Wargo JA, Reuben A, Cooper ZA, Oh KS, Sullivan RJ, editors. Immune effects of chemotherapy, radiation, and targeted therapy and opportunities for combination with immunotherapy. Semin Oncol; 2015;42:601-616.
- 9. Hughes PE, Caenepeel S, Wu LC. Targeted therapy and checkpoint immunotherapy combinations for the treatment of cancer. Trends Immunol 2016; 37:462-476.
- 10. Tang H, Qiao J, Fu Y-X. Immunotherapy and tumor microenvironment. Cancer Lett 2016; 370:85-90.
- 11. Kuroki M, Miyamoto S, Morisaki T, Yotsumoto F, Shirasu N, Taniguchi Y, *et al.* Biological response modifiers used in cancer biotherapy. Anticancer Res 2012; 32:2229-2233.
- 12. Suryadevara CM, Gedeon PC, Sanchez-Perez L, Verla T, Alvarez-Breckenridge C, Choi BD, *et al.* Are BiTEs the "missing link" in cancer therapy? Oncoimmunology 2015; 4:e1008339.
- 13. Stieglmaier J, Benjamin J, Nagorsen D. Utilizing the BiTE (bispecific T-cell engager) platform for immunotherapy of cancer. Expert Opin Biol Ther 2015; 15:1093-1099.
- 14. Swartz MA, Iida N, Roberts EW, Sangaletti S, Wong MH, Yull FE, *et al.* Tumor microenvironment complexity: emerging roles in cancer therapy. Cancer Res 2012; 72:2473-2480.
- 15. Li MY, Ye W, Luo KW. Immunotherapies targeting tumor-associated macrophages (TAMs) in cancer. Pharmaceutics 2024; 16:865-892.
- 16. Olejarz W, Sadowski K, Szulczyk D, Basak G. Advancements in personalized CAR-T therapy: Comprehensive overview of biomarkers and therapeutic targets in hematological malignancies. Int J Mol Sci 2024; 25:7743-7765.
- 17. Dvir K, Giordano S, Leone JP. Immunotherapy in breast cancer. Int J Mol Sci 2024; 25:7517-7532.
- 18. Bai R, Cui J. Development of immunotherapy strategies targeting tumor microenvironment is fiercely ongoing. Front Immunol 2022; 13:890166.
- 19. Golonko A, Pienkowski T, Swislocka R, Orzechowska S, Marszalek K, Szczerbinski L, *et al.* Dietary factors and their influence on immunotherapy strategies in oncology: A comprehensive review. Cell Death Dis 2024; 15:254-269.
- 20. Verhaert MAM, Aspeslagh S. Immunotherapy efficacy and toxicity: Reviewing the evidence behind patient implementable strategies. Eur J Cancer 2024; 209:114235.
- 21. Rosenberg SA, Restifo NP. Adoptive cell transfer as personalized immunotherapy for human cancer. Science 2015; 348:62-68.
- 22. Liao S-K, Oldham RK. Immunotherapy of cancer is a part of biotherapy. J Cancer Metastasis Treat 2018; 4:3-10
- 23. Bonifant CL, Jackson HJ, Brentjens RJ, Curran KJ. Toxicity and management in CAR T-cell therapy. Mol Ther Oncolytics 2016; 3:16011-16017.
- 24. Lin B, Du L, Li H, Zhu X, Cui L, Li X. Tumor-infiltrating lymphocytes: Warriors fight against tumors powerfully. Biomed Pharmacother 2020; 132:110873.
- 25. Weber EW, Maus MV, Mackall CL. The emerging landscape of immune cell therapies. Cell 2020; 181:46-62.
- 26. Wang S, Sun J, Chen K, Ma P, Lei Q, Xing S, *et al.* Perspectives of tumor-infiltrating lymphocyte treatment in solid tumors. BMC Med 2021; 19:140-146.
- 27. Rosenberg SA, Restifo NP, Yang JC, Morgan RA, Dudley ME. Adoptive cell transfer: A clinical path to effective cancer immunotherapy. Nat Rev Cancer 2008; 8:299-308.
- 28. Jiang T, Zhou C. The past, present and future of immunotherapy against tumor. Transl Lung Cancer Res 2015; 4:253-264.
- 29. Mohammadi M, Moradi Hasan-Abad A, Ghasemi A. Evaluation

- of the antitumor activity of moronecidin (Piscidin)-like peptide in combination with anti-PD-1 antibody against melanoma tumor. Iran J Basic Med Sci 2023; 26:1061-1067.
- 30. Ghasemi A, Ghavimi R, Momenzadeh N, Hajian S, Mohammadi M. Characterization of antitumor activity of a synthetic moronecidin-like peptide computationally predicted from the tiger tail seahorse hippocampus comes in tumor-bearing mice. Int J Pept Res Ther 2021; 27:2391-2401.
- 31. Kuroki M, Miyamoto S, Morisaki T, Yotsumoto F, Shirasu N, Taniguchi Y, *et al.* Biological response modifiers used in cancer biotherapy. Anticancer Res 2012; 32:2229-2233.
- 32. Sharma A, Campbell M, Yee C, Goswami S, Sharma P. Immunotherapy of cancer. Clinical Immunology: Elsevier; 2019. p. 1033-1048. e1031.
- 33. Rosenberg SA, Restifo NP. Adoptive cell transfer as personalized immunotherapy for human cancer. Science 2015; 348:62-68.
- 34. Kong Y, Li J, Zhao X, Wu Y, Chen L. CAR-T cell therapy: Developments, challenges and expanded applications from cancer to autoimmunity. Front Immunol 2025;15:1519671.
- 35. Bonifant CL, Jackson HJ, Brentjens RJ, Curran KJ. Toxicity and management in CAR T-cell therapy. Mol Ther Oncolytics 2016; 3:16011-16017.
- 36. Robat-Jazi B, Mahalleh M, Dashti M, Nejati N, Ahmadpour M, Alinejad E, *et al.* A systematic review and meta-analysis on the safety and efficacy of CAR T cell therapy targeting GPRC5D in patients with multiple myeloma: A new insight in cancer immunotherapy. Anticancer Agents Med Chem 2025; 25:1017-1028.
- 37. Lin B, Du L, Li H, Zhu X, Cui L, Li X. Tumor-infiltrating lymphocytes: Warriors fight against tumors powerfully. Biomed Pharmacother 2020; 132:110873.
- 38. Wang S, Sun J, Chen K, Ma P, Lei Q, Xing S, *et al.* Perspectives of tumor-infiltrating lymphocyte treatment in solid tumors. BMC Med 2021; 19:1-7.
- 39. Rosenberg SA, Restifo NP, Yang JC, Morgan RA, Dudley ME. Adoptive cell transfer: A clinical path to effective cancer immunotherapy. Nat Rev Cancer 2008; 8:299-308.
- 40. Jiang T, Zhou C. The past, present and future of immunotherapy against tumor. Transl Lung Cancer Res 2015; 4:253-264.
- 41. Juárez-Salcedo LM, Sandoval-Sus J, Sokol L, Chavez JC, Dalia S. The role of anti-PD-1 and anti-PD-L1 agents in the treatment of diffuse large B-cell lymphoma: The future is now. Crit Rev Oncol Hematol 2017; 113:52-62.
- 42. Yu S, Li A, Liu Q, Li T, Yuan X, Han X, *et al.* Chimeric antigen receptor T cells: A novel therapy for solid tumors. J Hematol Oncol 2017; 10:78-90.
- 43. Tian Y, Li Y, Shao Y, Zhang Y. Gene modification strategies for next-generation CAR T cells against solid cancers. J Hematol Oncol 2020; 13:1-16.
- 44. Al-Haideri M, Tondok SB, Safa SH, Rostami S, Jalil AT, Al-Gazally ME, *et al.* CAR-T cell combination therapy: The next revolution in cancer treatment. Cancer Cell Int 2022; 22:1-26.
- 45. Figueroa JA, Reidy A, Mirandola L, Trotter K, Suvorava N, Figueroa A, *et al.* Chimeric antigen receptor engineering: A right step in the evolution of adoptive cellular immunotherapy. Int Rev Immunol 2015; 34:154-187.
- 46. Lim WA, June CH. The principles of engineering immune cells to treat cancer. Cell 2017; 168:724-740.
- 47. Ren J, Liu X, Fang C, Jiang S, June CH, Zhao Y. Multiplex genome editing to generate universal CAR T cells resistant to PD1 inhibition. Clin Cancer Res 2017; 23:2255-2266.
- 48. Maalej KM, Merhi M, Inchakalody VP, Mestiri S, Alam M, Maccalli C, *et al.* CAR-cell therapy in the era of solid tumor treatment: Current challenges and emerging therapeutic advances. Mol Cancer 2023; 22:20-73.
- 49. Miliotou AN, Papadopoulou LC. CAR T-cell therapy: A new era in cancer immunotherapy. Curr Pharm Biotechnol 2018; 19:5-18.
- 50. Shen S, Xu N, Yang S, O'Brien T, Dolnikov A. Stem cell approach to generate chimeric antigen receptor modified immune effector cells to treat cancer. Cytotherapy 2016; 18:S101.
- 51. Schuster SJ, Bishop MR, Tam CS, Waller EK, Borchmann P,

- McGuirk JP, *et al.* Tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma. N Engl J Med 2019; 380:45-56.
- 52. Myers JA, Miller JS. Exploring the NK cell platform for cancer immunotherapy. Nat Rev Clin Oncol 2021; 18:85-100.
- 53. Ong MZ, Kimberly SA, Lee WH, Ling M, Lee M, Tan KW, *et al.* FDA-approved CAR T-cell Therapy: A Decade of Progress and Challenges. Curr Pharm Biotechnol 2024; 25:1377-1393.
- 54. Waldman AD, Fritz JM, Lenardo MJ. A guide to cancer immunotherapy: From T cell basic science to clinical practice. Nat Rev Immunol 2020; 20:651-668.
- 55. Luo F, Wang Y, Liu J, Chu Y. BiTE-T cell: A novel design for solid tumor. Cancer Res 2019 ;79(13_Supplement):2328.
- 56. Tao R, Han X, Bai X, Yu J, Ma Y, Chen W, *et al.* Revolutionizing cancer treatment: Enhancing CAR-T cell therapy with CRISPR/Cas9 gene editing technology. Front Immunol 2024; 15:1354825.
- 57. Dimitri A, Herbst F, Fraietta JA. Engineering the next-generation of CAR T-cells with CRISPR-Cas9 gene editing. Mol Cancer 2022; 21:78-90.
- 58. Wei W, Chen ZN, Wang K. CRISPR/Cas9: A powerful strategy to improve CAR-T cell persistence. Int J Mol Sci 2023; 24:12317-12334
- 59. Rezvani K. Adoptive cell therapy using engineered natural killer cells. Bone Marrow Transplant 2019; 54:785-788.
- 60. Liu E, Tong Y, Dotti G, Shaim H, Savoldo B, Mukherjee M, *et al.* Cord blood NK cells engineered to express IL-15 and a CD19-targeted CAR show long-term persistence and potent antitumor activity. Leukemia 2018; 32:520-531.
- 61. Li Y, Hermanson DL, Moriarity BS, Kaufman DS. Human iPSC-derived natural killer cells engineered with chimeric antigen receptors enhance antitumor activity. Cell stem cell 2018; 23:181-192.e5.
- 62. Lutterbuese R, Raum T, Kischel R, Hoffmann P, Mangold S, Rattel B, *et al.* T cell-engaging BiTE antibodies specific for EGFR potently eliminate KRAS-and BRAF-mutated colorectal cancer cells. Proc Natl Acad Sci U S A 2010; 107:12605-12610.
- 63. Dos Reis FD, Saidani Y, Martín-Rubio P, Sanz-Pamplona R, Stojanovic A, Correia MP. CAR-NK cells: Harnessing the power of natural killers for advanced cancer therapy. Front Immunol 2025; 16:1603757.
- 64. Guo JH, Afzal A, Ahmad S, Saeed G, Rehman A, Saddozai UAK, *et al.* Novel strategies to overcome tumor immunotherapy resistance using CAR NK cells. Front Immunol 2025; 16:1550652.
- 65. Von Behring E, Kitasato S. The mechanism of diphtheria immunity and tetanus immunity in animals. 1890. Mol Immunol 1991: 28:1317-1320.
- 66. Schroeder Jr HW, Cavacini L. Structure and function of immunoglobulins. J Allergy Clin Immunol 2010; 125:S41-S52.
- 67. Sedykh SE, Prinz VV, Buneva VN, Nevinsky GA. Bispecific antibodies: design, therapy, perspectives. Drug Des Devel Ther 2018; 12:195-208.
- 68. Holzlöhner P, Hanack K. Generation of murine monoclonal antibodies by hybridoma technology. J Vis Exp 2017; 119:54832-54838.
- 69. Donini C, D'Ambrosio L, Grignani G, Aglietta M, Sangiolo D. Next generation immune-checkpoints for cancer therapy. J Thorac Dis 2018; 10:S1581-S1601.
- 70. Ocvirk J, Rebersek M, Boc M. Bevacizumab in first-line therapy of metastatic colorectal cancer: a retrospective comparison of FOLFIRI and XELIRI. Anticancer Res 2011; 31:1777-1782.
- 71. Rampino M, Bacigalupo A, Russi E, Schena M, Lastrucci L, Iotti C, *et al.* Efficacy and feasibility of induction chemotherapy and radiotherapy plus cetuximab in head and neck cancer. Anticancer Res 2012; 32:195-199.
- 72. Fan G, Wang Z, Hao M, Li J. Bispecific antibodies and their applications. J Hematol Oncol 2015; 8:130-143.
- 73. Baker JHE, Kyle AH, Reinsberg SA, Moosvi F, Patrick HM, Cran J, *et al.* Heterogeneous distribution of trastuzumab in HER2-positive xenografts and metastases: role of the tumor microenvironment. Clin Exp Metastasis 2018; 35:691-705.
- 74. Pallasch CP, Leskov I, Braun CJ, Vorholt D, Drake A,

- Soto-Feliciano YM, *et al.* Sensitizing protective tumor microenvironments to antibody-mediated therapy. Cell 2014; 156:590-602.
- 75. Cruz E, Kayser V. Monoclonal antibody therapy of solid tumors: clinical limitations and novel strategies to enhance treatment efficacy. Biologics 2019; 13:33-51.
- 76. Elgundi Z, Reslan M, Cruz E, Sifniotis V, Kayser V. The state-of-play and future of antibody therapeutics. Adv Drug Deliv Rev 2017; 122:2-19.
- 77. Chung J. Special issue on therapeutic antibodies and biopharmaceuticals. Exp Mol Med 2017; 49:e304.
- 78. Khan M, Maker AV, Jain S. The evolution of cancer immunotherapy. Vaccines 2021; 9:614-624.
- 79. LiverTox: Clinical and Research Information on Drug-Induced Liver Injury. Bethesda (MD): National Institute of Diabetes and Digestive and Kidney Diseases; 2012.
- 80. Wu J, Fu J, Zhang M, Liu D. Bispecific T cell engagers: An emerging therapy for management of hematologic malignancies. J Hematol Oncol. 2021;14:75-92.
- 81. Dhimolea E, Reichert JM. World Bispecific Antibody Summit, September 27-28, 2011, Boston, MA. MAbs 2012; 4:4-13.
- 82. Weisser NE, Hall JC. Applications of single-chain variable fragment antibodies in therapeutics and diagnostics. Biotechnol Adv 2009; 27:502-520.
- 83. Goulet DR, Atkins WM. Considerations for the Design of Antibody-Based Therapeutics. J Pharm Sci 2020; 109:74-103.
- 84. May C, Sapra P, Gerber HP. Advances in bispecific biotherapeutics for the treatment of cancer. Biochem Pharmacol 2012; 84:1105-1112.
- 85. Morecki S, Lindhofer H, Yacovlev E, Gelfand Y, Slavin S. Use of trifunctional bispecific antibodies to prevent graft versus host disease induced by allogeneic lymphocytes. Blood 2006; 107:1564-1569
- 86. Krishnamurthy A, Jimeno A. Bispecific antibodies for cancer therapy: A review. Pharmacol Ther 2018; 185:122-134.
- 87. Manis JP, Feldweg AM. Overview of therapeutic monoclonal antibodies. US Pharm 2019; 44:31.
- 88. Huang S, van Duijnhoven SMJ, Sijts A, van Elsas A. Bispecific antibodies targeting dual tumor-associated antigens in cancer therapy. J Cancer Res Clin Oncol 2020; 146:3111-3122.
- 89. Spiess C, Zhai Q, Carter PJ. Alternative molecular formats and therapeutic applications for bispecific antibodies. Mol Immunol 2015; 67:95-106.
- 90. Grugan KD, Dorn K, Jarantow SW, Bushey BS, Pardinas JR, Laquerre S, *et al.* Fc-mediated activity of EGFR x c-Met bispecific antibody JNJ-61186372 enhanced killing of lung cancer cells. MAbs 2017; 9:114-126.
- 91. Zhang X, Yang Y, Fan D, Xiong D. The development of bispecific antibodies and their applications in tumor immune escape. Exp Hematol Oncol 2017; 6:12.
- 92. Regales L, Gong Y, Shen R, de Stanchina E, Vivanco I, Goel A, *et al.* Dual targeting of EGFR can overcome a major drug resistance mutation in mouse models of EGFR mutant lung cancer. J Clin Invest 2009; 119:3000-3010.
- 93. Li J, Stagg NJ, Johnston J, Harris MJ, Menzies SA, DiCara D, *et al.* Membrane-proximal epitope facilitates efficient T cell synapse formation by Anti-FcRH5/CD3 and is a requirement for myeloma cell killing. Cancer Cell 2017; 31:383-395.
- 94. Thakur A, Huang M, Lum LG. Bispecific antibody based therapeutics: Strengths and challenges. Blood Rev 2018; 32:339-347.
- 95. Brinkmann U, Kontermann RE. The making of bispecific antibodies. MAbs 2017; 9:182-212.
- 96. Kontermann RE. Strategies for extended serum half-life of protein therapeutics. Curr Opin Biotechnol 2011; 22:868-876.
- 97. Kantarjian H, Stein A, Gökbuget N, Fielding AK, Schuh AC, Ribera JM, *et al.* Blinatumomab versus chemotherapy for advanced acute lymphoblastic leukemia. N Engl J Med 2017; 376:836-847.
- 98. Friedenstein AJ, Chailakhjan RK, Lalykina KS. The development of fibroblast colonies in monolayer cultures of guinea-pig bone

- marrow and spleen cells. Cell Tissue Kinet 1970; 3:393-403.
- 99. Aldoss I, Bargou RC, Nagorsen D, Friberg GR, Baeuerle PA, Forman SJ. Redirecting T cells to eradicate B-cell acute lymphoblastic leukemia: Bispecific T-cell engagers and chimeric antigen receptors. Leukemia 2017; 31:777-787.
- 100. Xing J, Lin L, Li J, Liu J, Zhou C, Pan H, *et al.* BiHC, a T-cell-engaging bispecific recombinant antibody, has potent cytotoxic activity against Her2 tumor cells. Transl Oncol 2017; 10:780-785.
- 101. Lim K, Zhu XS, Zhou D, Ren S, Phipps A. Clinical pharmacology strategies for bispecific antibody development: learnings from FDA-approved bispecific antibodies in oncology. Clin Pharmacol Ther 2024; 116:315-327.
- 102. Goéré D, Flament C, Rusakiewicz S, Poirier-Colame V, Kepp O, Martins I, *et al.* Potent immunomodulatory effects of the trifunctional antibody catumaxomab. Cancer Res 2013; 73:4663-4673
- 103. Zhang J, Medeiros LJ, Young KH. Cancer immunotherapy in diffuse large B-cell lymphoma. Front Oncol 2018; 8:351-362.
- 104. Köhnke T, Krupka C, Tischer J, Knösel T, Subklewe M. Increase of PD-L1 expressing B-precursor ALL cells in a patient resistant to the CD19/CD3-bispecific T cell engager antibody blinatumomab. J Hematol Oncol 2015; 8:111-115.
- 105. Lyons KU, Gore L. Bispecific T-cell engagers in childhood B-acute lymphoblastic leukemia. Haematologica 2024; 109:1668-1676
- 106. Ribera JM. Efficacy and safety of bispecific T-cell engager blinatumomab and the potential to improve leukemia-free survival in B-cell acute lymphoblastic leukemia. Expert Rev Hematol 2017; 10:1057-1067.
- 107. Simão DC, Zarrabi KK, Mendes JL, Luz R, Garcia JA, Kelly WK, *et al.* Bispecific T-cell engagers therapies in solid tumors: Focusing on prostate cancer. Cancers (Basel) 2023; 15:1412-1434. 108. Zhou S, Liu M, Ren F, Meng X, Yu J. The landscape of bispecific T cell engager in cancer treatment. Biomark Res 2021; 9:38-60.
- 109. Velasquez MP, Bonifant CL, Gottschalk S. Redirecting T cells to hematological malignancies with bispecific antibodies. Blood 2018; 131:30-38.
- 110. Aliperta R, Cartellieri M, Feldmann A, Arndt C, Koristka S, Michalk I, *et al.* Bispecific antibody releasing-mesenchymal stromal cell machinery for retargeting T cells towards acute myeloid leukemia blasts. Blood Cancer J 2015; 5:e348.
- 111. Zou W, Wolchok JD, Chen L. PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: Mechanisms, response biomarkers, and combinations. Sci Transl Med 2016; 8:328rv324.
- 112. Bryan LJ, Gordon LI. Releasing the brake on the immune system: The PD-1 strategy for hematologic malignancies. Oncology (Williston Park) 2015; 29:431-439.
- 113. Brodská B, Otevřelová P, Kuželová K. Correlation of PD-L1 surface expression on leukemia cells with the ratio of PD-L1 mRNA variants and with electrophoretic mobility. Cancer Immunol Res 2016; 4:815-819.
- 114. Sehgal A, Whiteside TL, Boyiadzis M. Programmed death-1 checkpoint blockade in acute myeloid leukemia. Expert Opin Biol Ther 2015; 15:1191-1203.
- 115. Deng L, Liang H, Burnette B, Beckett M, Darga T, Weichselbaum RR, *et al.* Irradiation and anti-PD-L1 treatment synergistically promote antitumor immunity in mice. J Clin Invest 2014; 124:687-695.
- 116. Curran MA, Montalvo W, Yagita H, Allison JP. PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors. Proc Natl Acad Sci U S A 2010; 107:4275-4280.
- 117. Rotte A, Jin JY, Lemaire V. Mechanistic overview of immune checkpoints to support the rational design of their combinations in cancer immunotherapy. Ann Oncol 2018; 29:71-83.
- 118. Disis ML, Taylor MH, Kelly K, Beck JT, Gordon M, Moore KM, *et al.* Efficacy and safety of avelumab for patients with recurrent or refractory ovarian cancer: Phase 1b results from the javelin solid tumor trial. JAMA Oncol 2019; 5:393-401.
- 119. Ye H, Liao W, Pan J, Shi Y, Wang Q. Immune checkpoint

- blockade for cancer therapy: Current progress and perspectives. J Zhejiang Univ Sci B 2025; 26:203-226.
- 120. Farkona S, Diamandis EP, Blasutig IM. Cancer immunotherapy: The beginning of the end of cancer? BMC Med 2016; 14:1-18.
- 121. Ribas A. Adaptive immune resistance: How cancer protects from immune attack. Cancer Discov 2015; 5:915-919.
- 122. Du X, Tang F, Liu M, Su J, Zhang Y, Wu W, *et al.* A reappraisal of CTLA-4 checkpoint blockade in cancer immunotherapy. Cell Res 2018; 28:416-432.
- 123. Nelson MA, Ngamcherdtrakul W, Luoh S-W, Yantasee W. Prognostic and therapeutic role of tumor-infiltrating lymphocyte subtypes in breast cancer. Cancer Metastasis Rev 2021; 40:519-536. 124. Ward FJ, Kennedy PT, Al-Fatyan F, Dahal LN, Abu-Eid R. CTLA-4-two pathways to anti-tumour immunity? Immunother Adv 2025; 5:ltaf008.
- 125. Topalian SL, Drake CG, Pardoll DM. Immune checkpoint blockade: A common denominator approach to cancer therapy. Cancer Cell 2015; 27:450-461.
- 126. Schreiner J, Thommen DS, Herzig P, Bacac M, Klein C, Roller A, *et al.* Expression of inhibitory receptors on intratumoral T cells modulates the activity of a T cell-bispecific antibody targeting folate receptor. Oncoimmunology 2015; 5:e1062969.
- 127. Krupka C, Kufer P, Kischel R, Zugmaier G, Lichtenegger FS, Köhnke T, *et al.* Blockade of the PD-1/PD-L1 axis augments lysis of AML cells by the CD33/CD3 BiTE antibody construct AMG 330: reversing a T-cell-induced immune escape mechanism. Leukemia 2016; 30:484-491.
- 128. Topp MS, Borchmann P, Wagner-Johnston ND, Provencio M, Cordoba R, Papadopoulos K, *et al.* Safety and preliminary antitumor activity of the anti-PD-1 monoclonal antibody REGN2810 alone or in combination with REGN1979, an anti-CD20 x anti-CD3 bispecific antibody, in patients with B-lymphoid malignancies. Blood 2017; 130:1495.
- 129. Segal N, Saro J, Melero Ia, Ros W, Argiles G, Marabelle A, *et al.* Phase I studies of the novel carcinoembryonic antigen T-cell bispecific (CEA-CD3 TCB) antibody as a single agent and in combination with atezolizumab: Preliminary efficacy and safety in patients (pts) with metastatic colorectal cancer (mCRC). Ann Oncol 2017; 28:v134.
- 130. Kil SH, Estephan R, Sanchez J, Zain JM, Kadin ME, Young JW, *et al.* PD-L1 is regulated by interferon gamma and interleukin 6 through STAT1 and STAT3 signaling in cutaneous T-cell lymphoma. Blood 2017; 130:1458-1458.
- 131. Nguyen LT, Ohashi PS. Clinical blockade of PD1 and LAG3—potential mechanisms of action. Nat Rev Immunol 2015; 15:45-56. 132. Nguyen LT, Ohashi PS. Clinical blockade of PD1 and LAG3—potential mechanisms of action. Nat Rev Immunol 2015; 15:45-56. 133. Ohaegbulam KC, Assal A, Lazar-Molnar E, Yao Y, Zang X. Human cancer immunotherapy with antibodies to the PD-1 and PD-L1 pathway. Trends Mol Med 2015; 21:24-33.
- 134. Hawkes ÉA, Grigg A, Chong G. Programmed cell death-1 inhibition in lymphoma. Lancet Oncol 2015; 16:e234-245.
- 135. Fife BT, Pauken KE, Eagar TN, Obu T, Wu J, Tang Q, et al. Interactions between PD-1 and PD-L1 promote tolerance by blocking the TCR-induced stop signal. Nat Immunol 2009; 10:1185-1192.
- 136. Francisco LM, Salinas VH, Brown KE, Vanguri VK, Freeman GJ, Kuchroo VK, *et al.* PD-L1 regulates the development, maintenance, and function of induced regulatory T cells. J Exp Med 2009; 206:3015-3029.
- 137. Ross SL, Sherman M, McElroy PL, Lofgren JA, Moody G, Baeuerle PA, *et al.* Bispecific T cell engager (BiTE*) antibody constructs can mediate bystander tumor cell killing. PLoS One 2017; 12:e0183390.
- 138. Juárez-Salcedo LM, Sandoval-Sus J, Sokol L, Chavez JC, Dalia S. The role of anti-PD-1 and anti-PD-L1 agents in the treatment of diffuse large B-cell lymphoma: The future is now. Crit Rev Oncol Hematol 2017; 113:52-62.

- 139. Cruz E, Kayser V. Monoclonal antibody therapy of solid tumors: Clinical limitations and novel strategies to enhance treatment efficacy. Biologics 2019; 13:33-51.
- 140. Carter LL, Fouser LA, Jussif J, Fitz L, Deng B, Wood CR, *et al.* PD-1: PD-L inhibitory pathway affects both CD4+ and CD8+ T cells and is overcome by IL-2. Eur J Immunol 2002; 32:634-643. 141. Chen DS, Irving BA, Hodi FS. Molecular pathways: Nextgeneration immunotherapy—inhibiting programmed deathligand 1 and programmed death-1. Clin Cancer Res 2012; 18:6580-6587.
- 142. Osada T, Patel SP, Hammond SA, Osada K, Morse MA, Lyerly HK. CEA/CD3-bispecific T cell-engaging (BiTE) antibody-mediated T lymphocyte cytotoxicity maximized by inhibition of both PD1 and PD-L1. Cancer Immunol Immunother 2015; 64:677-688.
- 143. Giannopoulos K. Targeting immune signaling checkpoints in acute myeloid leukemia. J Clin Med 2019; 8:236-246.
- 144. Li H, Er Saw P, Song E. Challenges and strategies for next-generation bispecific antibody-based antitumor therapeutics. Cell Mol Immunol 2020; 17:451-461.
- 145. Horn LA, Ciavattone NG, Atkinson R, Woldergerima N, Wolf J, Clements VK, *et al.* CD3xPDL1 bi-specific T cell engager (BiTE) simultaneously activates T cells and NKT cells, kills PDL1 + tumor cells, and extends the survival of tumor-bearing humanized mice. Oncotarget 2017; 8:57964-57980.
- 146. Moody J, Barker PJ, Sciasci J, Pauley JL, Bragg A, McMillan *C, et al.* Blinatumomab infusion interruptions in pediatric patients rarely lead to readmission. Pediatr Blood Cancer 2024;71:e31223.
- 147. Huang J, Shi B, Yu S, Xue M, Wang L, Jiang J, et al. Efficacy of blinatumomab as maintenance therapy for B-lineage acute lymphoblastic leukemia/lymphoma following allogeneic hematopoietic cell transplantation. Blood Cancer J 2024; 14:109.
- 148. Guo Y, Quijano Cardé NA, Kang L, Verona R, Banerjee A, Kobos R, *et al.* Teclistamab: Mechanism of action, clinical, and translational science. Clin Transl Sci 2024; 17:e13717.
- 149. Mohan M, Monge J, Shah N, Luan D, Forsberg M, Bhatlapenumarthi V, *et al.* Teclistamab in relapsed refractory multiple myeloma: multi-institutional real-world study. Blood Cancer J 2024; 14:35-40.
- 150. Riedhammer C, Bassermann F, Besemer B, Bewarder M, Brunner F, Carpinteiro A, *et al.* Real-world analysis of teclistamab in 123 RRMM patients from Germany. Leukemia 2024; 38:365-371.
- 151. Howlett S, Carter TJ, Shaw HM, Nathan PD. Tebentafusp: A first-in-class treatment for metastatic uveal melanoma. Ther Adv Med Oncol 2023; 15:17588359231160140.
- 152. Khushboo B, Kumar JR. Perils and problems in bispecific T-cell engager antibodies. Curr Drug Saf 2025; 20:85-88.
- 153. Said SS, Ibrahim WN. Cancer resistance to immunotherapy: Comprehensive insights with future perspectives. Pharmaceutics 2023; 15:1143-1173.
- 154. Bai R, Chen N, Li L, Du N, Bai L, Lv Z, et al. Mechanisms of cancer resistance to immunotherapy. Front Oncol 2020; 10:1290-1301.
- 155. Vu SH, Vetrivel P, Kim J, Lee M-S. Cancer resistance to immunotherapy: molecular mechanisms and tackling strategies. Int J Mol Sci 2022; 23:10906-10927.
- 156. Sharma P, Hu-Lieskovan S, Wargo JA, Ribas A. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell 2017; 168:707-723.
- 157. de Miguel M, Umana P, Gomes de Morais AL, Moreno V, Calvo E. T-cell-engaging therapy for solid tumorsT-cell-engaging therapy for solid tumors. Clin Cancer Res 2021; 27:1595-1603.
- 158. Moon D, Tae N, Park Y, Lee S-W, Kim DH. Development of bispecific antibody for cancer immunotherapy: focus on T cell engaging antibody. Immune Netw 2022; 22:e4.
- 159. Sterner RC, Sterner RM. CAR-T cell therapy: Current limitations and potential strategies. Blood Cancer J 2021; 11:1-11.