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Objective (s): Hyperglycemia is widely recognized as the underlying cause for some debilitating 
conditions in diabetic patients. The role of cannabinoid CB1 and vanilloid TRPV1 receptors and 
their endogenous agonists, endovanilloids, in diabetic neuropathy is shown in many studies. Here 
we have used PC12 cell line to investigate the possible influence of glucose concentration in 
culture medium on cytoprotective or toxic effects of a CB1 [WIN55 212-2 (WIN)], or TRPV1 
[Capsaicin (CAS)] agonist. 
Materials and Methods: Cell viability was tested using the MTT assay. We have also measured 
TRPV1 and CB1 transcripts by real time reverse transcription-polymerase chain reaction while 
cells were grown in low (5.5 mM) and high (50 mM) glucose concentrations.  
Results: Real time PCR results indicated that high glucose medium increased (P<0.01) TRPV1 
mRNA and decreased (P <0.001) that of CB1. Cell culture tests show that hyperglycemic cells are 
more vulnerable (Dose × Medium, F (3,63)=41.5, P<0.001) to the toxic effects of capsaicin 
compared to those grown in low glucose medium. 
Conclusion: These findings propose that hyperglycemic conditions may result in neuronal cell death 
because of inducing a counterbalance between cytotoxic TRPV1 and cytoprotective CB1 receptors. 
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Introduction 
Diabetic neuropathy is a common complication of 

diabetes which affects around 50 percent of patients. 
It has various expressions and is persistent to 
treatment (1). There is much debate about the 
pathogenesis of this condition but a lot of studies 
consider hyperglycemia as the main initiating factor 
(2-5). Hyperglycemia may lead to neuropathy as a 
consequence of increasing oxidative stress (6-8), 
formation of glycation end products (9, 10), 
accumulation of polyols (11, 12), nerve ischemia due 
to vasculopathies (13-15) ,etc. Peripheral diabetic 
neuropathy (PDN) may alter pain sensation (hyper-, 
hypoalgesia, allodynia) or leave it unchanged 
(normalgesia)(16). 

It is shown that intraneural Ca2+ concentration is an 
important underlying cause that may participate in 
PND by changing intracellular calcium signaling (17-
20). Intracellular calcium concentration is a variable 
which is, depending on the specific cell type, affected by 
the integration of many signaling pathways.                 

Elevated Ca2+  may lead to neuronal excitability 
(sensitization) (21) or death (22), both responsible for 
diabetic neuropathies (16). 

TRPV1 is a nonselective cation channel that 
belongs to the transient receptor potential (TRP) 
family of ion channels. It is activated by capsaicin and 
is responsible for the painful sensation of red 
peppers. This channel is distributed in many tissues 
and organs of the body. It senses a vast range                 
of stimuli (temperature, low extracellular pH and 
some lipid derivatives) and plays role in many 
physiologic and pathophysiologic conditions. many 
studies show that it has a crucial role in regulating 
calcium signaling in many cultured cell lines (23-27). 
CB1 is a G protein-coupled receptor (GPCR) that               
is activated by the natural compound (−)-Δ9-
tetrahydrocannabinol (Δ9-THC) and the endogenous 
endocannabinoids. The role of CB1 receptors in              
a variety of conditions such as anxiety, memory, 
immune function, depression, schizophrenia, 
Parkinson's disease, etc. is widely investigated. 
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Anandamide is the endogenous ligand for both CB1 
and TRPV1 receptors (28). 

Many studies show that TRPV1 and CB1 
receptors, expressed in a single cell, have opposing 
effects (29-33). There is some evidence to support 
the idea that changes in CB1/TRPV1 receptor 
signaling alters the cell response to anandamide or 
other exogenous more specific ligands (34, 35). 

In our study, we have hypothesized that 
hyperglycemic medium for PC12 cells would cause 
an imbalance in CB1/TRPV1 signaling in these cells. 
We test this hypothesis by determining TRPV1 and 
CB1 mRNA expression in cells grown in normal and 
hyperglycemic conditions. We also measured toxic 
effects of capsaicin and protective effects of WIN55 
212-2 in different glycemic conditions. The 
usefulness of PC12 cell line for studying functions 
and/or expression of TRPV1 and CB1 is discussed 
elsewhere (34, 36). 
 

Materials and Methods 
Cell culture 

Rat adrenal pheochromocytoma PC12 cells were 
grown in RPMI 1640 medium with sodium 
bicarbonate and L-Glutamine (Sigma-Aldrich) with 
10% (v/v) fetal calf serum, penicillin/streptomycin 
(100 U/ml and 100 µg/ml, Biochrom AG). 
Maintenance was at 37°C and 5% CO2. D-glucose 
(Sigma-Aldrich) solutions were added to the medium 
to achieve final glucose concentrations of 5.5               
(low glucose) and 50 mM (high glucose), simulating 
low-glycemic and hyper-glycemic conditions, 
respectively. D-mannitol (50 mM) was added to 
some 5.5 mM glucose medium samples to 
compensate for the higher osmolality. Cells were 
cultured for 5 days in 6 well dishes and medium was 
replaced every 2 days. Cells were then transferred to 
96 well plates (5000 per well) and incubated for 24 
hrs. After settlement of the cells the medium was 
aspirated and new low or high glucose media 
enriched with the proper concentration of the drugs 
were added to the cells.  
 
Drugs 

Capsaicin, capsazepine, WIN55 212-2 and AM251 
were obtained from Alexis Biochemicals. All drugs 
were dissolved in dimethyl sulfoxide (DMSO) and 
added to the media with DMSO concentration not 
more than 1%. Drug enriched media were added to 
the cells 24 hr before the MTT assay. To find the 
minimum toxic concentration of Capsaicin the drug 
was used at 10, 100, and 200 µM in low and high 
glucose medium. Cytoprotective effects of WIN 
55,212 (at 1, 5, 20 µM) were determined on the 
minimum toxic concentration of capsaicin (10 µM) in 
low and high glucose conditions. AM251 (10 µM), 
capsazepine (10 µM), capsaicin (10 µM) and WIN55 

212-2 (10 µM) were coadministered to see the 
possible interaction of drugs with receptors.    
 
 Cell viability (MTT) assay 

Cell viability was measured using the colorimetric 
assay in which live cells can reduce 3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 
bromide (MTT) to a blue formazan crystal. 24 hr 
after the treatments cells were incubated with MTT 
(0.5 mg/ml, Sigma-Aldrich) for 4.5 hr at 37°C and 
then the wells were aspirated and the blue formazan 
crystals were dissolved in DMSO for 5 min. The plate 
was read in a ELx808 microplate reader (Biotek) at 
550 nm. Data were collected from 9 independent 
experiments. 
 
RNA extraction 

Total RNA was extracted (n=6) using a High Pure 
RNA isolation kit (Roche Applied Science, 
Indianapolis, IN, USA) according to kit instructions. 
 
Reverse transcription 

A total volume of 20 µl containing: total RNA 10 µl 
(0.1 µg/µl), dNTPs (10 mM) 2 µl, expand reverse 
transcriptase (Roche) 1 µl, oligo (dT) 15 (20 pmol) 1 µl, 
dithiothreitol (DTT) 2 µl and buffer 4 µl was used for 
the reverse transcription procedure. The temperature 
was 42°C and the reaction ran for 60 min. 
 
Real time polymerase chain reaction 

cDNA amplification was done in StepOnePlus real 
time PCR System (Applied Biosystems,CA, USA). 

The internal standard was Beta-actin and the 
specific primers for CB1 and TRPV1 were as follows: 
CB1 forward primer 5'-CgT-CgT-TCA- Agg-AgA-ATg-
Agg-3', CB1 reverse primer 5'-TgC-CgA-TgA-AgT-ggT-
Agg-AAg-3', TRPV1 forward primer 5'-gCg-AgT-TCA-
AAg-ACC-CAg-A-3' and TRPV1 reverse primer 5'-           
ATT-CTC-CAC-CAA-gAg-ggT-CA-3'(37). The reaction 
contained the following compounds: 6 µl of Power 
SYBR Green PCR Master Mix 2X (Applied Biosystems, 
CA, USA), 20 pmol of the primers (0.24 µl), 1.2 µl of 
template, 4.56 µl RNase free water. The total volume of 
the reaction was 12 µl. The amplification profile for the 
genes was as follows: The holding stage (95°C for                   
15 min), the cycling stage (denaturation 15 Sec in 95°C, 
combined annealing/extension 60 Sec in 60°C). The 
number of cycles was 40. 
 

Data analysis 
The influence of the medium glucose 

concentration on capsaicin toxicity was analyzed 
using two-way analysis of variance (ANOVA). 
Comparisons versus control group was done using 
Holm-Sidak post comparisons. Student t-test was 
used to compare the effect of individual drugs with 
each other where appropriate. Data are shown as 
means± SEM. Data were considered significant when 
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P< 0.05. The results of real time PCR were analyzed 
by the software REST 2008 (Corbett research Pty, V 
2.0.7). This software uses the equation 2−ΔΔCT 
(relative quantification method) to calculate the fold 
change expression ratio of genes. The principles of 
this method are discussed elsewhere (38). 

 
Results 
 Toxic effects of capsaicin on PC12 cells in low and 
high glucose medium 

PC12 cells were incubated for 24 hr with doses             
of 0, 10, 100, 200 µM of capsaicin which were grown 
in a low (5.5 mM) or high (50 mM) glucose medium 
for 5 days. The results of capsaicin effects on viability 
are shown in Figure 1. Two way ANOVA results 
showed that viability was decreased in high glucose 
compared to low glucose medium (Glucose,                       
F (1,63)=136.4, P<0.001). Viability was decreased at 
higher doses of the drug both in low and high glucose 
medium (Dose, F (3,63)=134.3, P<0.001) and 
decrement of viability was greater in the medium 
with higher glucose concentration (Dose × Medium, F 
(3,63)=41.5, P<0.001). 

 
 Cytoprotective effects of WIN55 212-2 on toxic 
effects of capsaicin 

To find out if a CB1 agonist has protective effects 
on toxicity induced by capsaicin, WIN55 212-2 (0, 1, 
5, 20 µM) and capsaicin (10 µM) were added to low 
and high glucose media 24 hr before MTT assay 
(Figure 2).  

The results show that in the low glucose medium 
the viability of cells is statistically different (P< 0.05) 
when WIN55 212-2 concentrations are 1, 5 µM 
compared to when they are grown in WIN55 212-2-
free medium. In high glucose conditions viability is 
only improved (P<0.05) when the concentration of 
WIN55 212-2 is 20 µM. 
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Figure 1. Effect of glucose and capsaicin concentrations in the 
medium on viability of PC12 cells. MTT was used to measure the 
viability of cells 24 hr after they were exposed to different (0, 10, 
100, 200 µM) capsaicin concentrations. * P =0.02 compared to low 
glucose medium.§ P< 0.001 compared to low glucose medium. The 
results are shown as mean±SEM 
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Figure 2. Cytoprotective effects of WIN55 212-2 on toxicity 
induced by capsaicin. WIN55 212-2 (0, 1, 5, 20 µM) and capsaicin 
(10 µM) were co-administered on PC12 cells cultured in low          
(5.5 mM) and high (50 mM) glucose media. MTT was used to 
measure viability. *P<0.05 compared to WIN (0 µM) in low glucose 
medium. § P<0.001 compared to WIN (0 µM) in high glucose 
medium. The results are shown as mean±SEM. WIN; WIN55 212-2   

 
Effect of TRPV1 and CB1 antagonist on toxic and 
protective effects of TRPV1 and CB1 agonists 

To see the effects of drug antagonism capsazepine 
(10 µM), as a TRPV1 antagonist was co-administered 
with capsaicin (10 µM) 24 hr before MTT assay.                 
In another experiment, AM251 (10 μM), as a CB1 
antagonist, was co-administered with capsaicin               
(10 µM) and WIN55 212-2 (10 μM). Tests were done 
in cells which were grown in low (5.5 mM) and high  
(50 mM) glucose media for 5 days (Figure 3). T-test 
results show that in both media co-administration of 
capsazepine can improve (P<0.05) viability of cells 
compared to capsaicin alone. The results also show 
that when a CB1 antagonist, AM251 (5 µM), is added 
to capsaicin and WIN55 212-2 the improving effects 
of WIN55 212-2 is ablated and the viability of cells is 
not statistically significant (P>0.05) with capsaicin.  
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Figure 3. Effects of TRPV1 and CB1 antagonism on PC12 cells 
exposed to capsaicin. Capsazepine (10 µM) was co-administered 
with capsaicin (10 µM) and AM251 (5 µM) was co-administered 
with capsaicin (10 µM) and WIN55 212-2 (5 µM) to see if the 
effects of agonists were blocked by antagonists. All drugs were 
administered 24 hrs before the MTT assay. *P<0.05 compared to 
CAS (10 µM). The results are shown as mean±SEM. CAS; capsaicin, 
CAZ; capsazepine, WIN; WIN55 212-2    
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Table 1. Effects of medium glucose concentration on CB1 and TRPV1 expression in PC12 cells 
 
 
 
 
 
 
 
 
 

TRPV1 is up-regulated in high glucose medium in comparison to low glucose medium by an expression ratio of 8.7±2.3 and CB1 receptor is 
down-regulated in high glucose medium by an expression ratio of 0.04±1.25 
 
 

Effects of low and high glucose concentration on 
mRNA expression of CB1 and TRPV1 

Data analysis indicates that mRNA for CB1 is 
down-regulated in high glucose compared to low 
glucose medium. The fold change in expression ratio 
of CB1 is 0.04 (P<0.001). TRPV1 mRNA is up-
regulated and the fold change in expression ratio is 
8.7 (P<0.01) (Table 1). 
 

Discussion 
This study provides evidence that hyperglycemia 

diminishes expression of CB1 and enhances that of 
TRPV1 receptors in PC12 cell line and shows that 
this change has negative effects on cell viability in 
the face of a TRPV1 agonist. 

The increasing number of diabetic patients in the 
world and the related economic and human losses has 
made diabetes as one of the most important research 
fields in medicine. CB1 and TRPV1 are two important 
endovanilliod receptors that recently are the subject of 
many research articles. Many ongoing studies are 
conducted to understand the changing pattern of the 
endovanilloid system in the course of diabetes and 
there are hopes that modification of its components 
would open new ways to encounter long term 
complications of the disease. Neuropathies are some 
late complications of diabetes that are caused by the 
increased excitability or death of peripheral or central 
neurons (16). Many ongoing studies are trying to 
understand the mechanism of these changes.  

Our results show that the high glucose medium 
has decreased mRNA expression of CB1 receptors 
(Table 1). Effects of glucose in down-regulation of 
CB1 receptor in PC12 cells and DRG neurons 
(isolated from streptozotocin-induced diabetic rats) 
is reported in previous studies (34). A number of in 
vivo or cell culture based studies show that CB1 is a 
cytoprotective receptor but the mechanism of this 
protection is less known (39-42).  

In spite of CB1 receptors, hyperglycemia has 
increased RNA transcripts for TRPV1 gene (Table 1). 
TRPV1 is a nonspecific cation channel with high 
permeability for calcium ions (27). Impairment of 
calcium homeostasis in sensory neurons is an 
important factor in the development of diabetic 
neuropathies (19, 20, 43, 44). TRPV1 channels play a 
major role in neuronal sensitization and chronic pain 
sensation (45). Prolong activation of TRPV1 channels 

may even lead to neuronal cell apoptosis (23, 46). In 
our experiments TRPV1 receptor is up regulated (by 
the fold change expression ratio of 8.7) in cells 
grown in hyperglycemic media which is supportive 
for the higher toxicity of capsaicin in this condition 
(Figure 1). In low glucose medium WIN55 212-2 has 
reverted capsaicin (10 µM) toxicity in the minimum 
concentration of 5 µM while in high glucose medium 
a minimum concentration of 20 µM is needed (Figure 
2). Reduced protective effects of CB1 agonist may be 
explained by reduced expression of CB1 (by the fold 
change expression ratio of 0.04) and enhanced 
expression of TRPV1 genes. These results suggest 
that one mechanism for cytoprotection of the CB1 
receptors is their counteraction with TRPV1 
receptors. Osmolality plays no role because there 
were no significant differences between glucose and 
manitol osmotic controls (data not shown). In both 
low and high glucose media the effects of capsaicin 
(10 µM) is reverted by using a TRPV1 antagonist, 
capsazepine (10µM), showing that toxicity is 
receptor mediated. Co-administration of a CB1 
antagonist, AM251 (5µM), has also prevented the 
protective effects of WIN55 212-2 (5 µM) indicative 
of the role of CB1 receptors in the process (Figure 3). 
Previous studies show that inflammation is an 
important underlying cause for enhanced signaling 
of TRPV1 (20, 44, 45, 47). Enhanced signaling is 
reported to be related to increased oligomerization, 
phosphorylation, and/or targeted expression of 
TRPV1 proteins on the cell surface membrane (47), 
enhanced cooperative functional expression of 
Cav3.2 T-type calcium and TRPV1 channels (20), 
increased translation and transport of TRPV1 ion 
channels without changing its transcription (44) and 
enhanced TRPV1 mRNA expression (45). The study 
by Evans et al (2007) has shown that there is a 
crosstalk between these two receptors and CB1 
differently affects TRPV1 signaling at low and high 
concentrations of nerve growth factor (NGF)(48) so 
modification of the interaction between receptors 
may be another reason for increased signaling of 
TRPV1 channels. 
 

Conclusion 
In our study we have demonstrated that higher 

glucose concentrations are responsible for more 
toxic effects of TRPV1 activation and less protective 

 CB1 expression ratio TRPV1 expression ratio 

Low glucose 1 1 
High glucose 0.04±1.25 8.7±2.3 

P value <0.001 <0.01 

Result on mRNA 
expression 

down-regulation up-regulation 
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effects of a CB1 agonist. In support of these results 
Real time PCR assay shows an increase for TRPV1 
and a decrease for CB1 receptors. It is also probable 
that hyperglycemia would pave the way for more 
toxic effects of TRPV1 agonist by changing the 
crosstalk between TRPV1 and CB1 receptors. Since 
anandamide and some other lipid derivatives in the 
body are agonists for both TRPV1 and CB1 receptors 
detailed understanding of the changes of these 
receptors and neural cell response to their 
endogenous ligands in diabetic patients may help to 
better understand the pathophysiologic basis of 
diabetic neuropathy and open ways to introduce new 
drugs for the prevention and/or treatment of this 
condition.     
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