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analysis of variance test (ANOVA) for repeated 
measures followed by a Holm-Sidak’s test. 
Significance was established when the 
probability values were less than 0.05.              
The investigations were approved by the local 
ethics committee (Tierversuchsgenehmigung, 
Bezirksregierung Münster, Deutschland, AZ: 
50.0835.1.0, G79/2002). 

 
Results 
The effect of THC on CSD 
Focal application of KCl induced negative DC 
deflections followed by positive waves 
(amplitude of 14.8 ± 1.7 mV; duration of 103 
±5 sec). Negative DC-fluctuations were 
sometimes preceded by small positive waves. 
These CSD waves propagated opposite to the 
direction of the ACSF flow at propagation 
velocity of 3.3 ± 0.1 mm / min.  

The effect of five different concentrations 
of THC (0.1, 1, 2.5, 5, 10 ; n = 6 for each 
concentration) was tested on potassium-
evoked CSD in neocortical tissues. The ratio 
between the second and the first DC potential 
waves (CSD2/CSD1) was calculated in control 
slices and slices treated with THC. THC 
application at concentration of 0.1 M did not 
significantly change different characteristic 
features of CSD, i.e. amplitude, duration, and 
propagation velocity. THC at higher 
concentrations (1-10 M) dose-dependently 
reduced the amplitude and the duration of 
negative depolarisation potential shifts 
occurring after the second KCl application 
(Figure 1 A and B; ANOVA, P ≤ 0.001). THC 
at different concentrations decreased the 
amplitude and duration of CSD between 33±7 
to 72±6 % and between 20±4 to 63±3 % of the 
initial levels, respectively. THC did not change 
the velocity of negative DC potential 
propagation at concentrations of 1-5 M        
(3.2± 0.2 mm / min; P = 0.3). However, THC 
at 10 M significantly decreased the velocity 
of DC-deflection propagation to 3±0.1 
mm/min (t test, P≤ 0.006). After wash-out of 
THC, the amplitude, the duration, and the 
velocity of CSD propagation (CSD3) returned 
close to the initial levels (CSD1; Figure 1 A).  

THC (10 M) was added to the bath 
medium sixty minutes before induction of the 
first CSD (amplitude of 10.4±1 mV; duration 
of 89±3 sec; the second protocol). Omission of 
THC from the bath medium significantly 
increased the amplitude of CSD to 13.7±1 mV 
(t test, P ≤ 0.006) and the duration to 109±2 
sec (t test, P ≤ 0.003). 

 
The effect of CB (1)-agonist WIN 55,212-2 
on CSD 
WIN 55,212-2 at 0.1 M did not affect CSD 
(n= 6). However, WIN 55,212-2 at 
concentrations of 1-10 M dose-dependently 
decreased the amplitude of negative DC 
potentials which occurred after the second KCl 
application (CSD2, n=24, Figure 2 A; 
ANOVA, P ≤ 0.001). Application of WIN 
55,212-2 for sixty min reduced the CSD 
amplitude to 33±4 % of the baseline level 
(CSD2/CSD1 ratio). WIN 55,212-2 at these 
concentrations also significantly and dose-
dependently decreased the mean duration of 
CSD to 52±4 % of the initial value (ANOVA). 
WIN 55,212-2 only at concentrations of 5 and 
10 M significantly and reversibly decreased 
the velocity of the DC-wave propagation     
(2.7±1 mm / min; t test, P ≤ 0.001, Figure 2 A 
and C). After washout of the compound, the 
amplitude of the deflection of DC potentials 
(CSD3) returned close to the initial levels 
(CSD1; Figure 2 A).  

WIN 55,212-2 at concentration of 5 M 
was added to ACSF sixty min before induction 
of CSD1 (n= 6, amplitude of 12.7±1 mV; 
duration of 70±4 sec). Omission of WIN 
55,212-2 from the bath solution increased the 
characteristic features of the second CSD 
(amplitude of 19.2±1 mV; duration of 100±5 
sec; t test, P ≤ 0.001). Application of DMSO at 
concentrations used to dissolve WIN 55,212-2 
did not change the characteristic features of 
CSD (n= 8).  
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Figure 1. Effects of Delta9-tetrahydrocannabinol (THC) on cortical spreading depression (CSD) in the somatosensory 
neocortical tissues of rats. A: Recording of DC potentials in the third layer of a neocortical slice before (A1), during 
(A2), and after (A3) application of THC (5 M). B: The relationship between THC concentrations and suppression of 
the amplitude (B1) and the duration (B2) of CSD. CSD was elicited by KCl microinjection. The curve indicates the plot 
of percentage reduction of CSD amplitude (B1) or duration (B2) vs. THC concentrations (n = 6 for each concentration). 
THC dose-dependently suppressed the amplitude and the duration of CSD (ANOVA, P ≤ 0.001). The percentage of 
CSD amplitude and duration reduction was measured by division of the amplitude and the duration of CSD induced 
after application of THC to the amplitude of SD elicited before superfusion of the substance. Values represent 
mean±SEM  
  
 
 
 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Effects of CB (1)-agonist WIN 55,212-2 and CB (2)-agonist JWH 133 on cortical spreading depression (CSD) in the 
somatosensory neocortical tissues of rats. A: Recording of DC potential shifts in the third layer of a neocortical slice before 
(A1), during (A2), and after (A3) application of WIN 55,212-2 (5 M). WIN 55,212-2 significantly suppressed the amplitude 
and duration of CSD (t-test). B: Recording of negative DC-fluctuations before (B1), during (B2), and after (B3) application of 
JWH 133 (10 M) in the third layer of a neocortical slice. There were no statistical changes in CSD characteristic features by 
JWH 133. SD was elicited by KCl microinjection. C: The curve indicates the plot of percentage decreases of CSD amplitude 
(C1) and duration (C2) vs. WIN 55,212-2 concentrations (n = 6 for each concentration).WIN 55,212-2 dose-dependently 
suppressed the amplitude (C1) and the duration of CSD (ANOVA, P ≤ 0.001). The percentage of CSD amplitude and 
duration reduction was measured by division of the amplitude and the duration of CSD induced after application of WIN 
55,212-2 to the amplitude of SD elicited before superfusion of the substance. Values represent mean±SEM  
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The effect of CB (2)-agonist JWH 133 on CSD 
Sixty min application of JWH 133 at 
concentrations of 1-20 M after induction of 
CSD1 had no significant effects on the 
amplitude, the duration, and the velocity of 
propagation of the second CSD (n= 30,  Figure 
2 B). Furthermore, addition of JWH 133       
(20 M) to the bath medium before induction 
of the first CSD (the second protocol) also did 
not change the characteristic features of the 
first CSD comparing to the CSD elicited after 
sixty min wash-out of the substance (n= 6). 

 

 

The effect of WIN 55,212-2 on fEPSP and LTP  
The amplitude of the evoked fEPSP in the third 
layer of neocortical tissue by stimulation of 
white substance (with mean amplitude of 0.32 ± 
0.03 mV) decreased within 5 min after addition 
of WIN 55,212-2 (5 μM; n= 10) to the 
superfusate. After 1 hr washing of the 
neocortical slices with WIN 55,212-2, the 
amplitude of the fEPSP significantly decreased 
to 31±0.2 % (Mann-Whitney rank sum test,          
P= 0.028) of the initial values (Figure 3 A and 
B). The suppressive effect of WIN 55,212-2 on 
the amplitude of the fEPSP was reversible. After 
wash-out of the compound, the amplitude of the 
fEPSP recovered nearly to the baseline level 
within 15 min (Figure 3 A and B). 

A conditioning tetanic stimulation was 
delivered to the white substance of neocortical 
slices followed by pulses with stimulation 
parameters identical to control values. The 
evoked fEPSP was stable for at least 30 min 
before application of tetanic stimulation (less 
than 10% variation; Figure 3 C). Administration 
of tetanic stimulation produced a rapid and 
stable enhancement of the amplitude of the 
fEPSP in all tested preparations (n= 6, 140±1.7% 
control; Figure 3 C and D). The potentiation rose 
within 1–2 min and stabilized within 5 min after 
the train of stimulations. Application of WIN 
55,212-2 (5 M; n= 10) sixty min before tetanic 
stimulation significantly suppressed LTP 
induction in all tested slices (127±2.5% baseline, 
Mann-Whitney rank sum test, P≤ 0.001, Figure 
3 C and D). LTP lasted as long as the fEPSP 
were recorded (at least for 90 min). 
 

 

 
 

Figure 3. Effects of WIN 55,212-2 (WIN) on the evoked 
field excitatory post-synaptic potentials (fEPSP) and 
long-term potentiation (LTP) in the somatosensory 
neocortical tissues of rats. A: Recording of fEPSP in the 
third layer of a neocortical slice elicited by stimulation 
of white substance before (A1) and after (A2) 
application of WIN (5 μM). B: Group of bars represents 
the mean ± SEM of the amplitude of fEPSP before (first 
bar), during (middle bar) and after (third bar) 
application of WIN. C: Tetanic stimulation (ten trains of 
four pulses, pulse duration 0.1 msec; interpulse interval 
50 msec) produces a rapid and stable potentiation in the 
amplitude of the fEPSP, calculated as a percentage of 
baseline mean response amplitude. Solid circles and 
open triangles show the evoked fEPSP after application 
of WIN (5 M) and control, respectively. Arrow shows 
the time of tetanic stimulation, 60 min after application 
of WIN (5 M) and artificial cerebrospinal fluid (ACSF, 
control). Application of WIN significantly inhibited 
LTP of the evoked field potentials ((Mann-Whitney 
rank sum test, P= 0.028), calculated as a percentage of 
baseline mean response amplitude. D: Representative 
examples of the evoked field potentials before and after 
tetanic stimulation in WIN and ACSF (control) affected 
slices. * indicates P= 0.028 
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Discussion 
The present data revealed a dose dependent 
suppression of CSD by application of THC, 
the main active compound in cannabis. In 
addition, WIN 55,212-2, a CB1 receptor 
agonist, in contrast to JWH 133, a CB2 
receptor agonist, also suppressed the 
amplitude, the duration, and the propagation 
velocity of CSD. These findings point to the 
involvement of CB1 receptors in generation 
and propagation of CSD.  

Two well-characterized cannabinoid 
receptors, CB1 and CB2, mediate the effects 
of cannabis in mammalian brain. CB1 
cannabinoid receptors appear to mediate most 
of the psychoactive effects of THC and related 
compounds. This G protein-coupled receptor 
particularly expressed in cortex, hippocampus, 
amygdala, basal ganglia outflow tracts, and 
cerebellum, a distribution that corresponds to 
the most prominent behavioral effects of 
cannabis. CB2 cannabinoid receptors are also 
widely distributed in the mammalian brain. 
The multifocal expression of CB2 
immunoreactivity in glial and neuronal 
patterns in a number of brain regions suggests 
the involvement of these receptors in 
depression and drug abuse (23).  

A broad functional expression of CB1 
receptors in both GABAergic and 
glutamatergic neurons of the neocortex was 
reported (24). It was shown that the activation 
of presynaptic CB1 receptors decreases 
GABAergic synaptic inhibition (25, 26) and 
thus, may increase neuronal excitation by 
disinhibition. However, in the present study, 
we observed an inhibitory action on CSD by 
the activation of CB1 receptor. Several other 
studies also point to the inhibitory actions of 
CB1 receptors on neuronal activities. A 
lowered neuronal network excitability has 
been observed in rat neocortical slices in 
which the activation of CB1 receptors reduces 
the intensity and the spatial spread of the 
intrinsic optical signal and prolonged its 
kinetics (27). A decrease of neuronal 
excitation by application of CB1 receptor 
activation was also reported in the amygdale 
(28). It was demonstrated that THC or CB1 

receptor agonist completely eliminates 
recurrent epileptic activity in a rat pilocarpine 
model of epilepsy (29). Endocannabinoid 
mobilization via presynaptic CB1 receptor 
dampening activity of the primary cortical 

output of neocortical neurons (30) and 
administration of THC decreases sensory-
evoked cortical responses in anesthetized 
animals (31, 32). Conversely, disruption of 
endocannabinoid signalling by blocking of the 
CB1 receptors enhances whisker-evoked 
hyperemic responses in somatosensory cortex 
(33). The inhibitory effects of cannabinoid 
observed in the present study as well as other 
investigations are probably due to a decreased 
glutamatergic transmission, strong enough to 
override the disinhibitory effect on 
GABAergic transmission.  

Activation of CB1 receptors inhibits 
glutamatergic synaptic transmission. Both 
endogenous and synthetic cannabinoid 
receptor agonists activate potently and 
stereoselectively a presynaptic CB1 receptor 
that inhibits the release of glutamate via an 
inhibitory G-protein in cultured hippocampal 
pyramidal neurons (34-36). Hampson et al 
(36) have described an inhibitory modulation 
of the N-Methyl-D-aspartate (NMDA)-elicited 
signals, which is mediated by CB1 receptors in 
cortical and cerebellar cortices. In cerebellar 
granule neurons, cannabinoids modulate 
NMDA-mediated signals by interfering with 
calcium release from IP3-gated stores (37). 
The exposure during pregnancy to the CB1 
receptor agonist causes impairment in 
neocortical glutamatergic neurotransmission 
and NMDA receptor functions in offspring 
(38). Activation of CB1 receptors inhibits the 
NMDA- and kainate-stimulated noradrenaline 
release in guinea-pig hippocampus as well as 
the NMDA-stimulated dopamine release in rat 
striatum (39) and blocks the neurotoxicity of 
NMDA in cultured rat hippocampal neurons 
(40). The original hypothesis regarding 
mechanism of initiation and propagation of 
CSD pointed to the crucial role of 
glutamatergic transmission (41). Indeed, 
activation of NMDA receptors is critical for 
generation and propagation of CSD in 
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different neuronal tissues. It has been shown 
that the triggering of CSD requires activation 
of the NMDA subtype of glutamate receptors 
in human neocortical tissues (42), in rat 
cerebral cortex (43), and in chick retina (44). 
Blocking of NR2B-containing NMDA 
receptors also dose-responsively suppressed 
the CSD amplitude in rat neocortical tissues 
(45). In the presence of ifenprodil, an NR2B 
receptor subunit-selective NMDA receptor 
antagonist, the occurrence of CSD was 
abolished (46).  

However, other mechanisms of action such 
as modulation of NO, CGRP, or 
cyclooxygenase and lipoxygenase pathways 
may also contribute to the suppressive effect 
of cannabinoids on CSD. Anandamide, the 
endogenous ligand of the cannabinoid CB1 
and CB2 receptors, was able to inhibit 
significantly neurogenic dural vasodilation, 
CGRP-, and NO-induced dural vessel dilation 
found in the rat intravital microscopy model of 
trigeminovascular activation (8). There is 
considerable evidence indicating NO and 
CGRP as key coupling compounds linking 
CSD changes in cerebral blood flow and 
metabolism (42). In addition, NO also plays a 
role in initiation and propagating of CSD. 
Local inhibition of NO synthesis with 7-
nitroindazole, a selective neuronal NO 
synthase isoform, dose-dependently reduced 
the intensity of KCl induced SD in rats (47). 
The inhibitory effects of THC and                    
other endocannabinoids on cyclooxygenase 
and lipoxygenase pathways such as their 
effects on phospholipase A2 and arachidonate 
metabolism (48) may also mediate their 
pharmacological actions on CSD. CSD 
induces a strong COX-2 mRNA expression in 
neocortex, which is regulated by NMDA 
receptor-stimulated phospholipase A2 (49). 

In the present experiments, neocortical 
slices affected by the activation of CB1 
receptors exhibited a pronounced and 
persisting inhibition of LTP. It has been 
known that synaptic plasticity and LTP depend 
on the availability of NMDA subtype 
glutamate receptors (50). Several 
investigations conducted on hippocampal 

tissues have indeed shown that cannabinoids 
act at CB1 receptors prevent induction of LTP 
(51, 52). Disrupting CB1 receptor-mediated 
neurotransmission at the genome level 
produces mutant mice with an enhanced 
capacity to strengthen synaptic connections 
(53, 54), suggesting that endocannabinoids 
restrict the potentiation process. CSD induces 
an LTP-like effect in rat neocortical slices (55) 
and enhances LTP induction in human 
neocortical tissues (56). A facilitatory effect of 
CSD on induction of LTP has been reported 
(57, 58). Enhancement of LTP induction and 
facilitation of CSD occurrence was observed 
by application of female hormones in rat 
somatosensory neocortical tissues (59). 
Modulation of LTP was also observed isolated 
from the CSD propagation site in hippocampal 
tissues (60). It has been shown that 
enhancement of synaptic strength was 
accompanied with cellular hyperexcitability 
(61, 62). The inhibition of LTP after CB1 
agonist application could be due to blockade of 
NMDA receptors/channels at the synaptic site, 
an effect which may be also responsible for its 
suppressive effect on CSD.  

It has been shown that neurons with A-fiber 
and C-fiber input in the trigeminocervical 
complex with input from the ophthalmic 
division of the trigeminal nerve were inhibited 
by activation of the cannabinoid CB1 receptors 
(9). Moskowitz et al (17) suggested that CSD 
activates trigeminal afferents, thus causing the 
pain and the cascade of events recognized as 
migraine. Although this theory was challenged 
by some studies (63) and is still a matter of 
debate (15), still there exists a link between the 
visual aura and pain by showing that CSD 
triggers trigeminal afferents in rats. This link 
demonstrated that CSD induces a delayed 
blood flow increase within the pial vessels and 
middle meningeal artery, causing protein 
leakage in dura mater, and activating the 
ipsilateral trigeminal nucleus caudalis (18). 
Furthermore, intracellular recordings of the 
neurons in the dorsal horn of cervical spinal 
cord segment, ipsilateral to the hemisphere in 
which CSD was evoked, showed a transient 
suppression of spontaneous burst discharges, 
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followed by a significant enhancement of the 
neuronal activity. This suggested sensitization 
and activation of the neurons responsible               
for processing sensory information in the 

trigeminocervical complex by CSD (19). 
Activation of CB1 receptors may alleviate 
migraine pain by inhibition of CSD and its 
consequent trigeminal neuronal activation.  
Several anti-migraine drugs, such as propranolol, 
sumatriptan, methysergide, paracetamol, 
acetylsalicyclic acid, and dihydroergotamine, 
suppressed different characteristic features of 
CSD in various animal models, both in vivo and 
in vitro (42).  

There may be some limitations that need to 
be acknowledged and addressed regarding the 
use of cannabinoids in treatment of SD-related 
disorders such as migraine headache. The 
first limitation concerns the hallocinogenic 
properties of cannabinoids. This side-effect 
should be taken into consideration in further 
development of new cannabinoid derivatives 
as new drug (1). In addition, cannabinoid CB1  

agonist inhibited induction of LTP in our 
study. Changing of synaptic plasticity by 
activation of CB1 receptors may affect signal 
processing as well as learning and memory in 
different regions of the brain. 

Suppression of CSD by modulation of CB1 
receptors may point to the potential therapeutic 
effects of cannabinoids in migraine with aura. 
More experimental and clinical researches are 
needed before we know whether cannabinoids 
may really be helpful in treating migraine pain. 
 
Conclusion 
Suppression of CSD by activation of CB1 
receptors suggests the potential therapeutic effects 
of cannabinoids in migraine with aura as well as 
other CSD-related disorders. More research is 
needed before we know whether cannabinoids may 
be helpful in treating migraine pain. 
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