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Objective(s): Tuberculosis (TB) has still remained a global health issue. One third of the world's 
population is infected with tuberculosis and the current BCG vaccine has low efficiency; hence, it is 
necessary to develop a new vaccine against TB. The aim of the current study was to evaluate the 
efficiency of a novel DNA vaccine encoding Mtb32C-HBHA antigen in inducing specific immune 
responses against Mycobacterium tuberculosis. 
Materials and Methods: A DNA plasmid vaccine expressing Mtb32C-HBHA fusion protein was 
constructed and its ability in protein expression was examined by RT-PCR and Western blot methods. 
Female BALB/c mice were vaccinated with 100 μg of purified recombinant vector in an attempt to assess 
its immunogenicity and protective efficacy. Further, the cytokines, IFN-γ, IL-12, IL-4, IL-10, and TGF-β 
were assessed. 
Results: The levels of all the studied cytokines were significantly increased (P<0.05) compared with the 
control group. IFN-γ production in the group receiving DNA vaccine plus BCG was increased compared 
with those receiving only DNA vaccine or BCG (P<0.001). 
Conclusion: The immunogenicity of the new chimeric DNA vaccine was confirmed alone and in 
combination with BCG. Based on the results of the current study, the constructed DNA vaccine induced 
the expression of Mtb32C-HBHA fusion protein efficiently in vitro. Furthermore, high levels of the 
specific cytokines were induced in mice. By using this DNA vaccine as a booster after BCG, higher 
amounts of IFN-γ will be produced. 
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Introduction 
Tuberculosis (TB) is a life threatening disease 

caused by Mycobacterium tuberculosis and has 
remained a major global public health problem (1). 
About 9 million new cases of infection with TB and 2 
million deaths due to TB are reported each year (2). 
Despite the relatively high efficiency of BCG vaccine, 
its effectiveness in the adult pulmonary system and 
population of endemic regions remains controversial. 
This necessitates the development of a new vaccine 
against TB with higher efficiency than the currently 
available BCG (3).  

Recently, different vaccines such as M. tuberculosis 
mutants, recombinant BCG expressing various immunogenic 
antigens, subunit vaccines based on the highly 
immunogenic M. tuberculosis antigens, and DNA 
vaccine have been introduced (4-6). DNA vaccine is a 
simple way to introduce different antigens to the 
immune system, which is capable of inducing both 
cellular and humoral immune responses (7). Previous 
studies have shown that Mtb32C and HBHA are highly 
immunogenic antigens. HBHA is a mycobacterial  

adhesin that binds to proteoglycan molecules on                 
the surface of the lung epithelial cells (8, 9). HBHA 
participates in extrapulmonary dissemination of                  
M. tuberculosis from lung to spleen. Previous studies 
have indicated that immunization with HBHA can 
induce a protection equal to that of BCG vaccination 
and can be used as a booster (10-12). Mtb32C is 
conserved in BCG and M. tuberculosis, and has specific 
epitopes (GAPINSATAM). Among MHC-1 restricted 
mycobacterial epitopes, Mtb32C can enhance CD8+ T-
cell-dependent protective immunity and induce 
higher IFN-γ production (13, 14). In fact, IFN-γ has a 
key role in triggering cellular responses against 
intracellular pathogens such as M. tuberculosis. 
Consequently, it can be used as a specific antigen in 
IFN-γ production.  

Prime-boost strategy is generally considered to be a 
promising way to enhance the efficacy of BCG (15). Using 
this strategy, the designated vaccine containing highly 
immunogenic mycobacterial antigens is administered  
to BCG pre-treated animals. This vaccination regimen 
induces higher levels of protection against TB compared 
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with BCG alone. In the current study, a DNA vaccine 
based on mtb32C and hbha genes was constructed, 
and its ability to stimulate the immune system alone 
and as a booster was evaluated in an animal model. 
 

Materials and Methods 
Pathogen-free female BALB/c mice between 6 and 

8 weeks of age were obtained from Razi Vaccine and 
Serum Research Institute (Mashhad, Iran). All mice 
were kept under SPF conditions and maintained in 
accordance with the Ethical Policies of Mashhad 
University of Medical Sciences. 

 
Plasmid construction 

Gene isolation, cloning, fusion, and plasmid 
construction were performed previously (16, 17). 
Briefly, Mtb32C and HBHA genes were isolated from                    
M. tuberculosis H37Rv genome and were cloned into 
pCDNA3.1 (+). Restriction enzyme analysis and DNA 
sequencing confirmed the accuracy of the cloning 
procedure. 

 
Transfection, RT-PCR, and Western blot 

To confirm the in vitro expression of Mtb32C-
HBHA fusion genes, the plasmid was transfected              
into HeLa cells (American Type Culture Collection 
Manassas, VA, USA) using lipofectamine transfection 
reagent according to the manufacturer’s instructions 
(Invitrogen, USA). Then, 72 hr after transfection, the 
cells were treated with 0.5 ml trypsin (Invitrogen, 
USA) and were incubated for 10 min. Cell suspension 
was harvested and total RNA was extracted using 
RNX-Plus (SinaClon, Iran), as described previously 
(16, 17). Purified RNA was used for cDNA synthesis 
using cDNA synthesis kit (Pars Tous, Iran) and was 
amplified by PCR. To detect the presence of His-Tag 
marker in chimeric Mtb32C-HBHA protein (a marker 
of constructed rather than natural protein), Western 
blot method was performed using mouse anti-His Tag 
antibody as the primary antibody and peroxidase 
conjugated rabbit anti-mouse IgG as the secondary 
antibody (AbD SeroTec, USA). 

 
Vaccination 

A total of 40 female BALB/c mice were randomly 
divided into these groups (10 mice in each group): 
control (pCDNA3.1+ vector), vaccine (pcDNA3.1+-
Mtb32C-HBHA), BCG and BCG prime plus booster 
vaccine (pcDNA3.1+-Mtb32C-HBHA). The BCG and 
BCG prime plus booster vaccine groups were firstly 
immunized subcutaneously with BCG (5×105 CFU/PBS) 
(Pasteur institute, Iran) and then boosted three times 
intramuscularly with 100 μg designated vaccine at 
two-week intervals. The control group and vaccine 
groups were immunized three times intramuscularly 
at two-week intervals with 100 μg pCDNA3.1 (+) and 
recombinant vectors, respectively. Four weeks after 
the last immunization, all animals were sacrificed and 
their spleens were excised for further analysis (18). 

Cytokine assay 
Four weeks after the third vaccination, the spleen 

lymphocyte was extracted from all vaccinated and 
negative control mice. The 3×105 viable cells were 
cultured in 96-well microplates with RPMI 1640 
medium (Invitrogen, USA) supplemented with 10% 
fetal calf serum (FCS), penicillin, and streptomycin in 
a total volume of 300 μl. 

Splenocytes extracted from BCG vaccinated mice were 
cultured with different concentrations (0.5-5 mg/ml) of 
heat-killed M. tuberculosis H37Rv (MTB antigen) and 104 _ 

105 CFU of live BCG bacterium (BCG antigen). The plates 
were incubated at 37 °C in a humidified incubator with 
5% CO2 for 72 hr. After the stimulation, the supernatants 
were harvested and IFN-γ release assay was performed 
using ELISA kits (eBioscience, SanDiego, CA) according              
to the manufacturer's instructions. The maximum 
production of IFN-γ was seen in 0.5 mg/ml of MTB 
antigen and 2×104 CFU of BCG antigen in PBS. Based on 
these results, all splenocytes extracted from all groups 
were stimulated with these antigen concentrations                
(19, 20). 

The freshly isolated splenocytes were incubated 
with MTB and BCG antigens for three days. At the end 
of day three, cell supernatants (after centrifugation) 
were used for subsequent analysis.  

The concentrations of IFN-γ, interleukin-4 (IL-4),               
IL-12, TGF-β, and IL-10 in the culture supernatants were 
evaluated by an ELISA kit (eBioscience, SanDiego,                   
CA) following the manufacturer’s recommendations. 
Assay sensitivity levels for IFN-γ, IL-12p70, IL-4, and IL-
10 were 15 pg/ml, 15 pg/ml, 4 pg/ml, 30 pg/ml, and                   
8 pg/ml, respectively. The data were expressed as 
mean± standard deviation for each group of mice 
(eBioscience, SanDiego, CA). 
 
Statistical analysis  

The normality of the acquired data was assessed 
by Kolmogorov-Smirnov test. All data were analyzed 
by SPSS19.0 software using two-way ANOVA, and 
P<0.05 was considered statistically significant. 
 

Results  
RT-PCR and Western blot to assess the expression 
of DNA construct 

Expression of the constructed DNA vaccine was first 
confirmed by RT-PCR to detect mRNA production, and 
was followed by Western blot to detect the recombinant 
Mtb32C-HBHA protein. The constructed Mtb32C-HBHA 
fusion protein was successfully expressed in the 
eukaryotic system. The amplified fragment using 
Mtb32C and HBHA specific primers demonstrated 
that recombinant vector could be transcribed in HeLa 
cell line. To assess the ability of vector in  producing 
recombinant protein in cell culture system,  Western 
blot technique and staining with  specific antibodies and 
ECL detection reagent were used (abCam, UK) (Figures 
1 and 2).  
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Figure 1. RT-PCR results on cDNA from transfected HeLa cells (lane 
numbers 2 and 5) and non-transfected cells (lane numbers 1 and 
4); lane 3: 1 kb DNA size marker (Fermentas, Germany) 

 
 

 
Cytokine assay 

Four weeks after the last immunization, the mice 
were sacrificed, and specific cytokine production (IFNγ, 
IL-10, TGF-β,IL-12 and IL-4 ) was evaluated by ELISA in 
the supernatant of the splenocytes cultures after in vitro 
stimulation with MTB (0.5 mg/ml) and BCG antigens 
(2×104 CFU) for 72 hr. All mice vaccinated with Mtb32C-
HBHA as a DNA vaccine, BCG and BCG-prime boosted 
with Mtb32C-HBHA (in the absence of adjuvant)  
produced high levels of IFNγ,  IL-10, TGF-β, IL-12, and IL-
4 compared to the control group of mice vaccinated only 
with pCDNA3.1 vector (P<0.05). 

Significant differences (at significance level of 
P<0.001) were observed in all vaccinated groups 
(BCG, DNA vaccine, and BCG-vaccine) in the four 
examined cytokines in comparison with those in the 
control group. 

As shown in Figure 3 and Table 1, significant differen- 
ces were found between BCG-vaccine and vaccine and 
control groups at the significance level P<0.001, while the 
difference between BCG and control group was at P<0.05. 
The BCG-vaccinated mice boosted with Mtb32C-HBHA 
had a higher level of IFN-γ than other groups. Splenocytes 
from BCG-primed mice boosted with Mtb32C-HBHA 
produced substantially higher IFN-γ (265.73±119 
pg/ml) than BCG-vaccinated mice (85.24±54 pg/ml), 
Mtb32C-HBHA vaccinated mice (144.78±37 pg/ml), and 
control mice (25.57±13 pg/ml). Significant differences  

 
 
 

Figure 2. Western blot analysis of cell lysate from HeLa cells 
transfected with pCDNA3.1-Mtb32C-HBHA construct (lane 1) and 
untransfected cells (lane 2); lane M: protein size marker 
(Fermentas Company, Germany) 

 
between BCG-vaccine group and BCG and vaccine 
groups were at P<0.01, while the difference between 
BCG and vaccine group was at P<0.05. Also, IFN-γ 
cytokine was increased in all groups except the control 
group. The mice vaccinated with BCG plus Mtb32C-
HBHA induced the highest levels of IFN-γ responses in 
the spleen. The combination of Mtb32C-HBHA and BCG 

significantly increased the expression of IFN-γ 
compared with BCG or Mtb32C-HBHA alone. 

The amount of IL-12 in the group receiving Mtb32C-
HBHA vaccine (31.98±7.45) was higher than that of                
BCG (24.78±6.79), BCG-vaccine (28.84±7.54), and control 
(6.54±2.18) groups. Significant differences were 
observed only between BCG and vaccine group at P<0.01. 

In the case of IL-4 and TGF-β, no statistically signi-
ficant differences were seen between BCG, BCG-vaccine 
and vaccine groups (P>0.05), but there were significant 
differences between control group and other groups. IL-
4 production levels of BCG (8.53±4.2), BCG-vaccine 
(8.58±2.8 ) and vaccine (9.65±2.8) groups  were higher 
than that of the control (3.64±.93) group. 

As shown in Figure 3 and Table 1, splenocytes from 
the mice receiving BCG (8.53±1.88), BCG-vaccine 
(8.22±1.41) and vaccine (9.93±4.18) showed higher 
TGF-β production than control (3.06±1.18) group and 
the group receiving just pCDNA3.1(+) vector. 

The amount of IL-10 was significantly higher in BCG-
vaccine group (1142.43±.577) than in BCG (825.64± 
.454), vaccine (783.84±394), and control (289.88± 
67.54) groups. Furthermore, there were no significant 
differences between BCG and vaccine groups (P>0.05), 
but significant differences were observed between BCG-
vaccine group and other groups, including BCG and 
vaccine groups at P<0.01. 
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Table 1. Spleen cytokine profile in different groups of BALB/c mice 
 

Cytokine 
 

Vaccination groups 

 

IL-12p70 

 

IL-4 

 

IL-10 

 

IFN-γ 

 

TGF-β 

Control 6.54±2.18 3.64±.93 289.88±76.54 25.57±13 3.06±1.18 

Vaccine 31.98±7.45 9.65±2.8 783.84 ±394 144.78±37 9.93±4.18 

BCG 24.78±6.79 8.53±4.2 825.64±.454 85.24±54 8.53±1.88 
BCG-vaccine 28.84 ±7.5 8.58±2.8 1142.43±.577 265.73±119 8.22±1.41 

Four weeks after the third Mtb32C-HBHA injection, ten mice from each group were sacrificed and their spleen cells were cultured in the 
presence of MTB and BCG antigens. Levels of cytokines were measured in a 72 hr culture supernatant. Values are expressed in pg/ml and 
represented as mean± standard deviation. The mice were primed with BCG and then boosted with 100 μg Mtb32C- HBHA (BCG–HBHA) 
subcutaneously 

 

 
Figure 3. The immune response to Mtb32C-HBHA after the last 
vaccination. The mice were divided into four groups and were 
immunized with BCG alone (BCG group), BCG/Mtb32C-HBHA 
(vaccine +BCG group), Mtb32C-HBHA alone (vaccine group), and 
empty vector (control group) 
The immune responses for IFN-γ (B), IL-10(B), IL-12(A), IL-4 (A), 
and TGF-β (A) after stimulation were quantified by ELISA. The 
results are expressed as mean±standard deviation for the mice per 
group, tested in triplicates. The two-way ANOVA test was used to 
analyze the results, and significant difference was set as P<0.05 

 
 
 

Discussion 
The goals of WHO regarding TB infection are 50% 

reduction in TB mortality by 2015 and reduction              
of the incidence of new cases to less than one in a 
million people by 2050. These objectives are expected 
to be achieved to provide at least partially new drugs 
and more effective vaccines (21, 22). Producing more 

effective vaccines than BCG is a critical step in global 
TB control. Nevertheless, replacing BCG vaccine with 
other vaccines is not rational because BCG is more 
effective against severe forms of childhood TB. DNA 
vaccine has been considered an alternative candidate 
for inducing an immune response against TB. In 
animal models, DNA vaccine has provided 
satisfactory results, whereas DNA vaccines in human 
have comparatively lower immunogenicity. This 
defect can be resolved in the prime-boost strategy          
(4, 23). In this study, the constructed DNA vaccine was 
used alone and in combination with BCG in prime-
boost strategy. Rouanet et al. showed that HBHA 
antibody titers were low during BCG vaccination. This 
indicates that despite the presence of hbha gene in 
BCG strain, it cannot be expressed. Therefore, the 
efficacy of BCG vaccine can be elevated by adding 
HBHA protein (24).  

Administration of pCDNA-Mtb32C-HBHA vaccine 
showed that it was safe and well tolerated. Other 
studies have provided evidence that HBHA can be 
used as a booster vaccine, and methylation in the              
C-terminal domain of mycobacterial HBHA plays              
an important role in T-cell stimulation (11, 25).           
This study showed that Mtb32C–HBHA without               
post-translational modifications is able to induce   
high levels of IFN-γ as a cellular immune response 
marker (13). Indeed, Mtb32C could compensate this 
deficiency and could enhance HBHA immunogenicity 
(14). Previous studies have shown that HBHA in             
the presence of a specific Th1 adjuvant is able to 
induce strong cellular immune responses against M. 
tuberculosis, identical to that of BCG (32-34). In the 
present study, the ability of pCDNA3.1-Mtb32C-HBHA 
vector to stimulate immune responses was evaluated 
in the absence of adjuvant. Mtb32C-HBHA fusion 
protein without C-terminal methylation and in the 
absence of an adjuvant could stimulate strong cellular 
immune responses in BALB/c mice. Mtb32C-HBHA 
induced a robust Thl response that is characterized by 
elevated levels of IL-12, IFN-γ, and TGF-β in contrast 
to low levels of IL-4. The findings of this research 
indicated that pCDNA-Mtb32C-HBHA construct could 
be used in heterologous prime boost regimen because 
in this strategy other cytokines which are necessary 
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for development, magnitude and maintenance of T 
cells such as IL-12 and TGF-β were produced. This 
result is also consistent with the results of the study 
performed by Guerrero et al. in which high levels of 
IL-10 were observed (32, 33). Another study 
concluded that the absence of methylation pattern in 
HBHA affects T-reg cells function, but others 
suggested that after induction, Th1 cells are the main 
source of IL-10 production. Cellular immune response 
has a critical role against intracellular pathogens, 
including M. tuberculosis. Protection against TB is 
dependent on cellular immunity, so IFN-γ and IL-12 
as intracellular pathogens have a pivotal role in 
protection against M. tuberculosis (26-28). Consistent 
with the results of previous studies, boosting Mtb32C-
HBHA vaccination following BCG priming exhibited 
significant increase in IFN-γ and IL-12 levels 
compared to other groups. Previous studies have 
reported that elevation of TGF-β in the presence of IL-
10 and IL-12 stimulates T-reg and memory T cells, 
respectively. Also in our study, all these cytokines 
were elevated compared to control group (29). Spleen 
lymphocytes from all groups, which were stimulated 
by both antigens, produced significant amounts of 
IL12p70. High production of IL12p70 was observed in 
the group receiving only the constructed vaccine and 
in the group immunized by BCG- Mtb32C-HBHA 
vaccine in the prime-boost strategy. The highest rate 
of IL-12 was observed in the vaccine group, which 
indicated the designated vaccine can efficiently be 
expressed in the host cells and has the ability to 
promote antigen-presenting cells (APCs). Elevation of 
IL-12 along with TGF-β can trigger responses 
characterizing the effectors-memory T cells (30, 31). 
This study showed that administration of BCG in 
combination with DNA vaccine induced stronger Th1 
immune response because IFN-γ was produced at 
greater levels than IL-4 by spleen lymphocyte upon in 
vitro stimulation. The Th1-type immune response has 
a key role in host response to M. tuberculosis infection. 
The obtained results strongly support this idea that 
vaccination with pCDNA3.1-Mtb32C-HBHA plasmid 
and use of prime-boost regimen enhance the immune 
response, which is turned toward Th1 type. In Prime-
boost strategy, employing DNA vaccines has been 
shown to elicit stronger and more diverse cellular 
immune responses than BCG vaccine alone. 
 

Conclusion  
It was shown that IFN-γ production in the mice 

primed with BCG and then boosted with DNA vaccine 
was more remarkable than those vaccinated only with 
BCG or vaccine. Indeed, this construct can induce not 
only high levels of IFN-γ but also other cytokines such 
as IL-12 and TGF-β. The profile of cytokine production 
by spleen cells showed that the vaccine is so strong 
that can stimulate the immune system. These findings 

indicate that prime-boost vaccination scheme is an 
efficient vaccination model against TB. 
 

Acknowledgment 
The results described in this paper were part of a 

PhD student thesis (Thesis No.454-A). This study was 
financially supported by Mashhad University of 
Medical Sciences, Mashhad, Iran (Grant No. 910016).   

 

References 
1. Brewer TF. Preventing tuberculosis with bacillus 
Calmette-Guerin vaccine: a meta-analysis of the literature. 
Clin Infect Dis 2000; 3:S64-67. 
2. Dara M, Dadu A, Kremer K, Zaleskis R, Kluge HH. 
Epidemiology of tuberculosis in WHO European Region and 
public health response. Eur Spine J 2013; 22:549-555. 
3. Colditz GA, Brewer TF, Berkey CS, Wilson ME, Burdick E, 
Fineberg HV, et al. Efficacy of BCG vaccine in the prevention 
of tuberculosis. Meta-analysis of the published literature. 
JAMA 1994; 271:698-702. 
4. Delogu G, Fadda G. The quest for a new vaccine against 
tuberculosis. J Infect Dev Ctries 2009; 3:5-15. 
5. Dietrich G, Viret JF, Hess J. Mycobacterium bovis BCG-
based vaccines against tuberculosis: novel developments. 
Vaccine 2003; 21:667-670. 
6. Parida SK, Kaufmann SH. Novel tuberculosis vaccines on 
the horizon. Curr Opin Immunol 2010; 22:374-384. 
7. Ghanem A, Healey R, Adly FG. Current trends in 
separation of plasmid DNA vaccines: a review. Anal Chim 
Acta 2013; 760:1-15. 
8. Pethe K, Aumercier M, Fort E, Gatot C, Locht C, Menozzi 
FD. Characterization of the heparin-binding site of the 
mycobacterial heparin-binding hemagglutinin adhesin. J 
Biol Chem 2000; 275:14273-14280. 
9. Vidal Pessolani MC, Marques MA, Reddy VM, Locht C, 
Menozzi FD. Systemic dissemination in tuberculosis and 
leprosy: do mycobacterial adhesins play a role? Microbes 
Infect 2003; 5:677-684. 
10. Krishnan N, Robertson BD, Thwaites G. The mechanisms 
and consequences of the extra-pulmonary dissemination of 
Mycobacterium tuberculosis. Tuberculosis (Edinb) 2010; 
90:361-366. 
11. Guerrero GG, Debrie AS, Locht C. Boosting with 
mycobacterial heparin-binding haemagglutinin enhances 
protection of Mycobacterium bovis BCG-vaccinated 
newborn mice against M. tuberculosis. Vaccine 2010; 
28:4340-4347. 
12. Locht C, Hougardy JM, Rouanet C, Place S, Mascart F. 
Heparin-binding hemagglutinin, from an extrapulmonary 
dissemination factor to a powerful diagnostic and 
protective antigen against tuberculosis. Tuberculosis 
(Edinb) 2006; 86:303-309. 
13. Irwin SM, Izzo AA, Dow SW, Skeiky YA, Reed SG, 
Alderson MR, et al. Tracking antigen-specific CD8 T 
lymphocytes in the lungs of mice vaccinated with the 
Mtb72F polyprotein. Infect Immun 2005; 73:5809-5816. 
14. Skeiky YA, Alderson MR, Ovendale PJ, Guderian JA, 
Brandt L, Dillon DC, et al. Differential immune responses 
and protective efficacy induced by components of a 
tuberculosis polyprotein vaccine, Mtb72F, delivered as 
naked DNA or recombinant protein. J Immunol 2004; 
172:7618-7628. 



Teimourpour et al.                                     Immune responses of  Mtb32C-HBHA DNA vaccine 
   

    Iran J Basic Med Sci, Vol. 20, No. 10, Oct 2017 

 

1124 

15. Romano M, D'Souza S, Adnet PY, Laali R, Jurion F, Palfliet 
K, et al. Priming but not boosting with plasmid DNA 
encoding mycolyl-transferase Ag85A from Mycobacterium 
tuberculosis increases the survival time of Mycobacterium 
bovis BCG vaccinated mice against low dose intravenous 
challenge with M. tuberculosis H37Rv. Vaccine 2006; 
24:3353-3364.  
16. Teimourpour R, Sadeghian A, Meshkat Z, Esmaelizad M, 
Sankian M, Jabbari AR. Construction of a DNA vaccine 
encoding Mtb32C and HBHA genes of mycobacterium 
tuberculosis. Jundishapur J Microbiol 2015; 8:e21556. 
17. Teimourpour R, Zare H, Rajabnia R, Yahyapoor Y, 
Meshkat Z. Evaluation of the eukaryotic expression of 
mtb32C-hbha fusion gene of Mycobacterium tuberculosis in 
Hepatocarcinoma cell line. Iran J Microbiol 2016; 8:132-
138. 
18. Meshkat Z, Teimourpour A, Rashidian S, Arzanlou M, 
Teimourpour R. Immunogenicity of a DNA Vaccine 
Encoding Ag85a-Tb10. 4 antigens from mycobacterium 
tuberculosis. Iran J Immunol 2016; 13:289. 
19. Bradford MM. A rapid and sensitive method for the 
quantitation of microgram quantities of protein utilizing the 
principle of protein-dye binding. Anal Biochem 1976; 
72:248-254. 
20. Meshkat Z, Mirshahabi H, Meshkat M, Kheirandish M, 
Hassan ZM. Strong immune responses induced by a DNA 
vaccine containing HPV16 truncated E7 C-terminal linked to 
HSP70 gene. Iran J Immunol 2011; 8:65. 
21. Ottenhoff TH, Kaufmann SH. Vaccines against 
tuberculosis: where are we and where do We need to go? 
PLoS Pathogens 2012; 8:e1002607. 
22. Martin C. Tuberculosis vaccines: past, present and 
future. Curr Opin Pulm Med 2006; 12:186-191. 
23. Feng CG PU, Demangel C, Spratt JM, Malin AS, Britton WJ. 
Priming by DNA immunization augments protective efficacy 
of Mycobacteriumbovis Bacille Calmette-Guerin against 
tuberculosis. Infect Immun 2001; 69:4174-4176. 
24. Rouanet C, Lecher S, Locht C. Subcutaneous boosting 
with heparin binding haemagglutinin increases BCG-
induced protection against tuberculosis. Microbes Infect 
2009; 11:995-1001. 

25. Guerrero GG, Locht C. Recombinant HBHA boosting 
effect on BCG-induced immunity against Mycobacterium 
tuberculosis infection. Clin Dev Immunol 2011; 
2011:730702. 
26. Barker LF, Brennan MJ, Rosenstein PK, Sadoff JC. 
Tuberculosis vaccine research: the impact of immunology. 
Curr Opin Immunol 2009; 21:331-338. 
27. Cavalcanti YV, Brelaz MC, Neves JK, Ferraz JC, Pereira VR.  
Role of TNF-Alpha, IFN-Gamma, and IL-10 in the Development 
of Pulmonary Tuberculosis. Pulm Med 2012; 2012:10. 
28. Redford P, Murray P, O’Garra A. The role of IL-10 in 
immune regulation during M. tuberculosis infection. 
Mucosal Immunol 2011; 4:261-270. 
29. Jung YJ, Ryan L, LaCourse R, North RJ. Increased interleukin-
10 expression is not responsible for failure of T helper 1 
immunity to resolve airborne Mycobacterium tuberculosis 
infection in mice. Immunology 2003; 109:295-299. 
30. Wyndham-Thomas C, Corbiere V, Dirix V, Smits K, 
Domont F, Libin M, et al. Key role of effector memory CD4+ 
T lymphocytes in a short-incubation heparin-binding 
hemagglutinin gamma interferon release assay for the 
detection of latent tuberculosis. Clin Vaccine Immunol 
2014; 21:321-328. 
31. Shafiani S DC, Ertelt JM, Moguche AO, Siddiqui I, Smigiel 
KS, et al. Pathogen-specific Treg cells expand early during 
mycobacterium tuberculosis infection but are later 
eliminated in response to Interleukin-12. J Exp Med 2013; 
38:1261-1270. 
32. Guerrero GG, Locht C. Recombinant HBHA boosting 
effect on BCG-induced immunity against Mycobacterium 
tuberculosis infection. Clin Dev Immunol 2011; 
2011:730702. 
33. Guerrero GG, Feunou FP, Locht C. The coiled-coil N-
terminal domain of the heparin-binding haemagglutinin is 
required for the humoral and cellular immune responses in 
mice. Mol Immunol 2008;46:116-24. 
34. Lebrun P, Raze D, Fritzinger B, Wieruszeski J-M, Biet F, 
Dose A, et al. Differential contribution of the repeats                 
to heparin binding of HBHA, a major adhesin of 
Mycobacterium tuberculosis. PLoS One 2012; 7:e32421. 
 

 


