Design of a humanized anti vascular endothelial growth factor nanobody and evaluation of its in vitro function

Document Type: Original Article

Authors

1 Venom & Biotherapeutics Molecules Laboratory, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, 1316943551, Iran

2 Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, 1050 Brussels, Belgium

3 National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, 1316943551, Iran

Abstract

Objective(s): Nanobodies, the single domain antigen binding fragments of heavy chain-only antibodies occurring naturally in camelid sera, are the smallest intact antigen binding entities. Their minimal size assists in reaching otherwise largely inaccessible regions of antigens. However, their camelid origin raises a possible concern of immunogenicity when used for human therapy. Humanization is a promising approach to overcome the problem.  
Materials and Methods: Here, we designed a humanized version of previously developed nanobody (anti vascular endothelial growth factor nanobody), evaluated and compared its predicted 3D structure, affinity and biological activity with its original wild type nanobody.
Results: Our in silico results revealed an identical 3D structure of the humanized nanobody as compare to original nanobody. In vitro studies also demonstrated that the humanization had no significant visible effect on the nanobody affinity or on its biological activity. 
Conclusion: The humanized nanobody could be developed and proposed as a promising lead to target pathologic angiogenesis.

Keywords

Main Subjects


1. Ferrara N, Hillan KJ, Gerber H-P, Novotny W. Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat Rev Drug Discov 2004; 3:391-400.

2. Hurwitz H, Fehrenbacher L, Novotny W, Cartwright T, Hainsworth J, Heim W, et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 2004; 350:2335-2342.

3. Chames P, Van Regenmortel M, Weiss E, Baty D. Therapeutic antibodies: successes, limitations and hopes for the future. Br J Pharmacol 2009; 157:220-233.

4. Filpula D. Antibody engineering and modification technologies. Biomolecular engineering 2007; 24:201-215.

5. Rosenfeld PJ, Brown DM, Heier JS, Boyer DS, Kaiser PK, Chung CY, et al. Ranibizumab for neovascular age-related macular degeneration. N Engl J Med 2006; 355:1419-1431.

6. Harmsen MM, De Haard HJ. Properties, production, and applications of camelid single-domain antibody fragments. Appl Microbiol Biotechnol 2007; 77:13-22.

7. Dumoulin M, Conrath K, Van Meirhaeghe A, Meersman F, Heremans K, Frenken LG, et al. Single-domain antibody fragments with high conformational stability. Protein Sci 2002; 11:500-515.

8. Desmyter A, Decanniere K, Muyldermans S, Wyns L. Antigen specificity and high affinity binding provided by one single loop of a camel single-domain antibody. J Biol Chem 2001; 276:26285-26290.

9. Nicholls H. The Camel Factor. NewScientist. 2007:50-53.

10. Dolk E, van der Vaart M, Lutje Hulsik D, Vriend G, de Haard H, Spinelli S, et al. Isolation of llama antibody fragments for prevention of dandruff by phage display in shampoo. Appl Environ Microbiol 2005; 71:442-450.

11. Olichon A, Schweizer D, Muyldermans S, Marco Ad. Heating as a rapid purification method for recovering correctly-folded thermotolerant VH and VHH domains. BMC Biotechnol 2007; 7: 1-8.

12. Arbabi-Ghahroudi M, Tanha J, MacKenzie R. Prokaryotic expression of antibodies. Cancer Metastasis Rev 2005; 24:501-519.

13. Frenken LG, van der Linden RH, Hermans PW, Bos JW, Ruuls RC, de Geus B, et al. Isolation of antigen specific llama VHH antibody fragments and their high level secretion by Saccharomyces cerevisiae. J Biotechnol 2000; 78:11-21.

14. Rahbarizadeh F, Rasaee MJ, Forouzandeh M, Allameh AA. Over expression of anti-MUC1 single-domain antibody fragments in the yeast Pichia pastoris. Mol Immunol 2006; 43:426-435.

15. Alvarez-Rueda N, Behar G, Ferre V, Pugniere M, Roquet F, Gastinel L, et al. Generation of llama single-domain antibodies against methotrexate, a prototypical hapten. Mol Immunol 2007; 44:1680-1690.

16. Kolkman JA, Law DA. Nanobodies–from llamas to therapeutic proteins. Drug Discov Today: Technol 2010; 7:e139-e146.

17. Rahbarizadeh F, Rasaee MJ, Forouzandeh Moghadam M, Allameh AA, Sadroddiny E. Production of novel recombinant single-domain antibodies against tandem repeat region of MUC1 mucin. Hybrid Hybridomics 2004; 23:151-159.

18. Kazemi-Lomedasht F, Behdani M, Rahimpour A, Habibi-Anbouhi M, Poshang-Bagheri K, Shahbazzadeh D. Selection and characterization of specific Nanobody against human immunoglobulin G. Monoclon Antib Immunodiagn Immunother 2015; 34:201-205.

19. Kazemi-Lomedasht F, Pooshang-Bagheri K, Habibi-Anbouhi M, Hajizadeh-Safar E, Shahbazzadeh D, Mirzahosseini H, et al. In vivo immunotherapy of lung cancer using cross-species reactive vascular endothelial growth factor nanobodies. Iran J Basic Med Sci 2017; 20:489-496.

20. Kazemi-Lomedasht F, Behdani M, Habibi-Anbouhi M, Shahbazzadeh D. Production and Characterization of Novel Camel Single Domain Antibody Targeting Mouse Vascular Endothelial Growth Factor. Monoclon Antib Immunodiagn Immunother2016; 35:167-171.

21. Homayouni V, Ganjalikhani-hakemi M, Rezaei A, Khanahmad H, Behdani M, Lomedasht FK. Preparation and characterization of a novel nanobody against T-cell immunoglobulin and mucin-3 (TIM-3). Iran J Basic Med Sci  2016; 19:1201-1208.

22. Bagheri M, Babaei E, Shahbazzadeh D, Habibi-Anbouhi M, Alirahimi E, Kazemi-Lomedasht F, et al. Development of a recombinant camelid specific diabody against the heminecrolysin fraction of Hemiscorpius lepturus scorpion. Toxin Rev 2017; 36:7-11.

23. Vaneycken I, Govaert J, Vincke C, Caveliers V, Lahoutte T, De  Baetselier P, et al. In vitro analysis and in vivo tumor targeting of a humanized, grafted nanobody in mice using pinhole SPECT/micro-CT. J Nuc Med 2010; 51:1099-1106.

24. Kazemi-Lomedasht F, Behdani M, Bagheri KP, Habibi-Anbouhi M, Abolhassani M, Arezumand R, et al. Inhibition of angiogenesis in human endothelial cell using VEGF specific nanobody. Mol Immunol 2015; 65:58-67.

25. Kazemi-Lomedasht F, Behdani M, Bagheri KP, Anbouhi MH, Abolhassani M, Khanahmad H, et al. Expression and purification of functional human vascular endothelial growth factor-a121; the most important angiogenesis factor. Adv Pharm Bull 2014; 4:323-328.

26. Conrath KE, Lauwereys M, Wyns L, Muyldermans S. Camel single-domain antibodies as modular building units in bispecific and bivalent antibody constructs. J Biol Chem 2001; 276:7346-7350.

27. Kazemi-Lomedasht Fatemeh BM, Pooshang Bagheri Kamran, Habibi-Anbouhi Mahdi, Abolhassani Mohsen, Arezumand Roghaye,Shahbazzadeh Delavar, Mirzahoseini Hasan. Inhibition of angiogenesis in human endothelial cell using VEGF specific nanobody. Mol Immunol 2015; 65:58-67.

28. Conrath K, Vincke C, Stijlemans B, Schymkowitz J, Decanniere K, Wyns L, et al. Antigen binding and solubility effects upon the veneering of a camel VHH in framework-2 to mimic a VH. J Mol Biol 2005; 350: 112-125.

29. Abderrazek RB, Vincke C, Hmila I, Saerens D, Abidi N, El Ayeb M,et al. Development of Cys38 knock-out and humanized version of NbAahII10 nanobody with improved neutralization of AahII scorpion toxin. Protein Eng Des Sel 2011;24:727–735.

30. Vincke C, Loris R, Saerens D, Martinez-Rodriguez S, Muyldermans S, Conrath K. General strategy to humanize a camelid single-domain antibody and identification of a universal humanized nanobody scaffold. J Biol Chem 2009; 284:3273-3284.

31. Wang P, Sidney J, Dow C, Mothe B, Sette A, Peters B. A systematic assessment of MHC class II peptide binding predictions and evaluation of a consensus approach. PLoS Comput Biol 2008; 4:e1000048.

32. Wang P, Sidney J, Kim Y, Sette A, Lund O, Nielsen M, et al. Peptide binding predictions for HLA DR, DP and DQ molecules. BMC Bioinformatics 2010; 11:568.

33. Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y. The I-TASSER Suite: protein structure and function prediction. Nat Methods 2015; 12:7-8.

34. Roy A, Kucukural A, Zhang Y. I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 2010; 5:725-738.

35. Wiederstein M, Sippl MJ. ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 2007; 35:W407-W410.

36. Sippl MJ. Recognition of errors in three‐dimensional structures of proteins. Proteins 1993; 17:355-362.

37. Lovell SC, Davis IW, Arendall WB, de Bakker PI, Word JM, Prisant MG, et al. Structure validation by Cα geometry: ϕ, ψ and Cβ deviation. Proteins 2003; 50:437-450.

38. Beatty JD, Beatty BG, Vlahos, WG. Measurement of monoclonal antibody affinity by non-competitive enzyme immunoassay. J Immunol Methods 1987; 100:173-179.

39. Kluetz PG, Figg WD, Dahut WL. Angiogenesis inhibitors in the treatment of prostate cancer. Expert Opin Pharmacother 2010; 11:233-247.

40. Vermeulen PB, van Golen KL, Dirix LY. Angiogenesis, lymphangiogenesis, growth pattern, and tumor emboli in inflammatory breast cancer: a review of the current knowledge. Cancer 2010; 116:2748-2754.

41. Szala S, Mitrus I, Sochanik A. Can inhibition of angiogenesis and stimulation of immune response be combined into a more effective antitumor therapy? Cancer Immunol Immunother 2010; 59:1449-1455.

42. Monk BJ, Willmott LJ, Sumner DA. Anti-angiogenesis agents in metastatic or recurrent cervical cancer. Gynecol Oncol 2010; 116:181-186.