Medicinal herbs in the treatment of neuropathic pain: a review

Document Type: Review Article


1 Department of Neuroscience, Mashhad University of Medical Sciences, Mashhad, Iran

2 Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran

3 Department of Pharmacodynamy and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran


Chronic neuropathic pain is a common significant and debilitating problem that presents a major challenge to health-care. Despite the large number of available drugs, there are no curative conventional treatments for neuropathic pain. Nowadays, more attention has been focused on the herbal formulation in the field of drug discovery. Therefore, we performed an extensive review about herbal drugs and plants that exhibited protective effects on neuropathic pain. In this review, the beneficial effects of each plant in different neuropathic pain model, either in animals or in patients are reported. Moreover, the possible involved mechanisms for the protective effects are discussed. The more common plants which are used for the treatment of neuropathic pain are included as: Acorus calamus, Artemisia dracunculus, Butea monosperma, Citrullus colocynthis, Curcuma longa, Crocus sativus, Elaeagnus angustifolia, Ginkgo biloba, Mitragyna speciosa, Momordica charantia, Nigella sativa, Ocimum sanctum, Phyllanthus amarus, Pterodon pubescens Benth, Rubia cordifolia and Salvia officinalis. Furthermore, the most pathways which are known to be involved in pain relief by means of herbal remedies are anti-oxidant activity, anti-inflammatory, anti-apoptotic, neuroprotective and calcium inhibitory actions.
In conclusion, this review suggests that some herbal plants can be suitable candidates for the treatment of neuropathic pain.


Main Subjects

1. Wang LX, Wang ZJ. Animal and cellular models of chronic pain. Adv Drug Deliv Rev 2003;55:949-965.
2. Razavi BM, Hosseinzadeh H. A review of the role of orexin system in pain modulation. Biomed Pharmacother 2017;90:187-193.
3. Treede RD, Jensen TS, Campbell J, Cruccu G, Dostrovsky J, Griffin J, et al. Neuropathic pain redefinition and a grading system for clinical and research purposes. Neurology 2008;70:1630-1635.
4. Mulla SM, Buckley DN, Moulin DE, Couban R, Izhar Z, Agarwal A, et al. Management of chronic neuropathic pain: a protocol for a multiple treatment comparison meta-analysis of randomised controlled trials. BMJ open. 2014;4(11):e006112.
5. Gilron I, Watson CPN, Cahill CM, Moulin DE. Neuropathic pain: a practical guide for the clinician. ‎Can Med Assoc J 2006;175:265-275.
6. Forouzanfar F, Amin B, Ghorbani A, Ghazavi H, Ghasemi F, Sadri K, et al. New approach for the treatment of neuropathic pain: Fibroblast growth factor 1 gene‐transfected adipose‐derived mesenchymal stem cells. Eur J Pain 2018;22:295-310.
7. Quintans JS, Antoniolli AR, Almeida JR, Santana‐Filho VJ, Quintans‐Junior LJ. Natural Products Evaluated in Neuropathic Pain Models‐A Systematic Review. Basic Clin Pharmacol Toxicol 2014;114:442-450.
8. Vranken JH. Current approaches to the management of peripheral neuropathic pain. J Pain Palliat Care Pharmacother 2015;29:307-310.
9. Hosseinzadeh H, Moallem S, Moshiri M, Sarnavazi M, Etemad L. Anti-nociceptive and anti-inflammatory effects of cyanocobalamin (vitamin B12) against acute and chronic pain and inflammation in mice. Arzneimittelforschung 2012;62:324-329.
10. Amin B, Hajhashemi V, Hosseinzadeh H. Minocycline potentiates the anti-hyperalgesic effect of ceftriaxone in CCI-induced neuropathic pain in rats. Res Pharm Sci 2015;10:34-42.
11. Cohen SP, Mao J. Neuropathic pain: mechanisms and their clinical implications. BMJ 2014;348:f7656.
12. Attal N. Neuropathic pain: mechanisms, therapeutic approach, and interpretation of clinical trials. Continuum 2012;18:161-175.
13. Manji HK, Moore GJ, Rajkowska G, Chen G. Neuroplasticity and cellular resilience in mood disorders. Mol Psychiatry 2000;5:578-593.
14. Gao Y-J, Ji R-R. Chemokines, neuronal–glial interactions, and central processing of neuropathic pain. Pharmacol Ther 2010;126:56-68.
15. Fan H, Li T-F, Gong N, Wang Y-X. Shanzhiside methylester, the principle effective iridoid glycoside from the analgesic herb Lamiophlomis rotata, reduces neuropathic pain by stimulating spinal microglial β-endorphin expression. Neuropharmacol 2016;101:98-109.
16. Li JW-H, Vederas JC. Drug discovery and natural products: end of an era or an endless frontier? Science 2009;325:161-165.
17. Boyd A, Bleakley C, Gill C, McDonough S, Hurley DA, Bell P, et al. Herbal medicinal products or preparations for neuropathic pain and fibromyalgia. Cochrane Database Syst Rev 2013.
18. Garg G, Adams JD. Treatment of neuropathic pain with plant medicines. Chin J Integr Med 2012;18:565-570.
19. Mogil JS, Davis KD, Derbyshire SW. The necessity of animal models in pain research. Pain 2010;151:12-17.
20. Mabley JG, Soriano FG. Role of nitrosative stress and poly (ADP-ribose) polymerase activation in diabetic vascular dysfunction. Curr Vasc Pharmacol 2005;3:247-252.
21. Tiwari V, Kuhad A, Chopra K. Emblica officinalis corrects functional, biochemical and molecular deficits in experimental diabetic neuropathy by targeting the oxido‐nitrosative stress mediated inflammatory cascade. Phytother Res 2011;25:1527-1536.
22. Drel VR, Pacher P, Vareniuk I, Pavlov I, Ilnytska O, Lyzogubov VV, et al. A peroxynitrite decomposition catalyst counteracts sensory neuropathy in streptozotocin-diabetic mice. Eur J Pharmacol 2007;569:48-58.
23. Wang ZQ, Porreca F, Cuzzocrea S, Galen K, Lightfoot R, Masini E, et al. A newly identified role for superoxide in inflammatory pain. J Pharm Exp Ther 2004;309:869-878.
24. Vincent AM, Brownlee M, Russell JW. Oxidative stress and programmed cell death in diabetic neuropathy. Ann N Y Acad Sci 2002;959:368-383.
25. Watcho P, Stavniichuk R, Ribnicky DM, Raskin I, Obrosova IG. High-fat diet-induced neuropathy of prediabetes and obesity: effect of PMI-5011, an ethanolic extract of Artemisia dracunculus L. Mediators Inflamm 2010; 2010:268547.
26. Ozay R, Uzar E, Aktas A, Uyar ME, Gürer B, Evliyaoglu O, et al. The role of oxidative stress and inflammatory response in high-fat diet induced peripheral neuropathy. J Chem Neuroanat 2014;55:51-57.
27. Winzell MS, Ahrén B. The high-fat diet–fed mouse a model for studying mechanisms and treatment of impaired glucose tolerance and type 2 diabetes. Diabetes 2004;53:S215-S219.
28. Schroder S, Beckmann K, Franconi G, Meyer-Hamme G, Friedemann T, Greten HJ, et al. Can medical herbs stimulate regeneration or neuroprotection and treat neuropathic pain in chemotherapy-induced peripheral neuropathy? Evid Based Complement Alternat Med 2013; 2013:423713.
29. Jaggi AS, Singh N. Mechanisms in cancer-chemotherapeutic drugs-induced peripheral neuropathy. Toxicology 2012; 291:1-9
30. Mittal N, Ginwal H, Varshney V. Pharmaceutical and biotechnological potential of Acorus calamus Linn.: an indigenous highly valued medicinal plant species. Pharmacogn Rev 2009;3:83-93.
31. Muthuraman A, Singh N, Jaggi AS. Effect of hydroalcoholic extract of Acorus calamus on tibial and sural nerve transection-induced painful neuropathy in rats. J Nat Med 2011; 65:282-292.
32. Muthuraman A, Singh N. Attenuating effect of Acorus calamus extract in chronic constriction injury induced neuropathic pain in rats: an evidence of anti-oxidative, anti-inflammatory, neuroprotective and calcium inhibitory effects. BMC Complement Altern Med 2011;11:24.
33. Muthuraman A, Singh N. Attenuating effect of hydroalcoholic extract of Acorus calamus in vincristine-induced painful neuropathy in rats. J Nat Med 2011;65:480-487.
34. Muthuraman A, Singh N. Neuroprotective effect of saponin rich extract of Acorus calamus L. in rat model of chronic constriction injury (CCI) of sciatic nerve-induced neuropathic pain. J Ethnopharmacol 2012;142:723-731.
35. Arulmozhi S, Mazumder PM, Narayanan L, Thakurdesai P. In vitro antioxidant and free radical scavenging activity of fractions from Alstonia scholaris Linn. R. Br. Int J PharmTech Res 2010;2:18-25.
36. Singh H, Arora R, Arora S, Singh B. Ameliorative potential of Alstonia scholaris (Linn.) R. Br. against chronic constriction injury-induced neuropathic pain in rats. BMC Complement Altern Med 2017;17:63.
37. Hong JH, Lee IS. Effects of Artemisia capillaris ethyl acetate fraction on oxidative stress and antioxidant enzyme in high-fat diet induced obese mice. ‎Chem. Biol. Interact 2009;179:88-93.
38. Shahraki MR, Mirshekari H, Samadi Z. The nociceptive and anti-Inflammatory effects of Artemisia dracunculus L. aqueous extract on fructose fed male rats. J Evid Based Complementary Altern Med 2015:895417.
39. Thiagarajan VRK, Shanmugam P, Krishnan UM, Muthuraman A, Singh N. Antinociceptive effect of Butea monosperma on vincristine-induced neuropathic pain model in rats. Toxicol Ind Health 2013;29:3-13.
40. Thiagarajan VR, Shanmugam P, Krishnan UM, Muthuraman A, Singh N. Ameliorative potential of Butea monosperma on chronic constriction injury of sciatic nerve induced neuropathic pain in rats. An Acad Bras Cienc 2012;84:1091-1104.
41. Marzouk B, Marzouk Z, Haloui E, Fenina N, Bouraoui A, Aouni M. Screening of analgesic and anti-inflammatory activities of Citrullus colocynthis from southern Tunisia. J Ethnopharmacol 2010;128:15-19.
42. Heydari M, Homayouni K, Hashempur MH, Shams M. Topical Citrullus colocynthis (bitter apple) extract oil in painful diabetic neuropathy: A double‐blind randomized placebo‐controlled clinical trial. J Diabetes 2016;8:246-252.
43. Shishodia S, Sethi G, Aggarwal BB. Curcumin: getting back to the roots. Ann N Y Acad Sci 2005;1056:206-217.
44. Zhao X, Xu Y, Zhao Q, Chen C-R, Liu A-M, Huang Z-L. Curcumin exerts antinociceptive effects in a mouse model of neuropathic pain: descending monoamine system and opioid receptors are differentially involved. Neuropharmacol 2012;62:843-854.
45. Moini Zanjani T, Ameli H, Labibi F, Sedaghat K, Sabetkasaei M. The attenuation of pain behavior and serum COX-2 concentration by curcumin in a rat model of neuropathic pain. Korean J Pain 2014;27:246-252.
46. Hosseinzadeh H, Modaghegh MH, Saffari Z. Crocus sativus L.(Saffron) extract and its active constituents (crocin and safranal) on ischemia-reperfusion in rat skeletal muscle. Evid Based Complement Alternat Med 2009;6:343-350.
47. Hosseinzadeh H, Nassiri‐Asl M. Avicenna’s (Ibn Sina) the canon of medicine and saffron (Crocus sativus): a review.Phytother Res 2013;27:475-483.
48. Amin B, Hosseinzadeh H. Evaluation of aqueous and ethanolic extracts of saffron, Crocus sativus L., and its constituents, safranal and crocin in allodynia and hyperalgesia induced by chronic constriction injury model of neuropathic pain in rats. Fitoterapia 2012;83:888-895.
49. Alavizadeh SH, Hosseinzadeh H. Bioactivity assessment and toxicity of crocin: a comprehensive review. Food Chem Toxicol 2014;64:65-80.
50. Sadeghnia HR, Shaterzadeh H, Forouzanfar F, Hosseinzadeh H. Neuroprotective effect of safranal, an active ingredient of Crocus sativus, in a rat model of transient cerebral ischemia. Folia Neuropathol 2017;55:206-213.
51. Amin B, Abnous K, Motamedshariaty V, Hosseinzadeh H. Attenuation of oxidative stress, inflammation and apoptosis by ethanolic and aqueous extracts of Crocus sativus L. stigma after chronic constriction injury of rats. An Acad Bras Cienc 2014;86:1821-1832.
52. Hosseinzadeh H, Shariaty VM. Anti-nociceptive effect of safranal, a constituent of Crocus sativus (saffron), in mice. Pharmacologyonline 2007;2:498-503.
53. Hosseinzadeh H, Younesi HM. Antinociceptive and anti-inflammatory effects of Crocus sativus L. stigma and petal extracts in mice. BMC Pharmacol 2002;2:7.
54. Taghavi T, Rashidy-Pour A, Vafaei AA, Sokhanvar M, Mohebbi N, Rezaei-Taviran M. Effects of saffron (Crocus Sativus L) stigma extract and its active constituent crocin on neuropathic pain responses in a rat model of chronic constriction injury. Iran J Pharm Res 2016; 15:253-261.
55. Amin B,  Hosseinzadeh H. Analgesic and anti-inflammatory effects of Crocus sativus L., (saffron). Bioactive nutraceuticals and dietary supplements in neurological and brain disease 2014:319-324.
56. Amin B, Hosseini S, Hosseinzadeh H. Enhancement of antinociceptive effect by co-administration of Amitriptyline and Crocus Sativus in a rat model of neuropathic pain. Iran J Pharm Res 2017;16:187-200.
57. Karimi G, Hosseinzadeh H, Rassoulzadeh M, Razavi BM, Taghiabadi E. Antinociceptive effect of Elaeagnus angustifolia fruits on sciatic nerve ligated mice. Iran J Basic Med Sci 2010; 13:97-101.
58. Tehranizadeh ZA, Baratian A, Hosseinzadeh H. Russian olive (Elaeagnus angustifolia) as a herbal healer. Bioimpacts 2016;6:155-167.
59. Zargari A. Medicinal plants. Tehran: Tehran Univ Press. 1989 Persian.
60. Hosseinzadeh H, Ramezani M, Namjo N. Muscle relaxant activity of Elaeagnus angustifolia L. fruit seeds in mice. J Ethnopharmacol 2003;84:275-278.
61. Hosseinzadeh H, Rahimi R. Anti-inflammatory effects of Elaeagnus angustifolia L. fruits in mice and rats. Irn J Med Sci 1999;24:143-147.
62. Ramezani M, Hosseinzadeh H, Daneshmand N. Antinociceptive effect of Elaeagnus angustifolia fruit seeds in mice. Fitoterapia 2001;72:255-262.
63. Panahi Y, Alishiri GH, Bayat N, Hosseini SM, Sahebkar A. Efficacy of Elaeagnus Angustifolia extract in the treatment of knee osteoarthritis: a randomized controlled trial. Excli J 2016;15:203-210.
64. Lee E, Chen HY, Wu TS, Chen TY, Ayoub IA, Maynard KI. Acute administration of Ginkgo biloba extract (EGb 761) affords neuroprotection against permanent and transient focal cerebral ischemia in Sprague‐Dawley rats. J Neurosci Res 2002;68:636-645.
65. Ahlemeyer B, Krieglstein J. Neuroprotective effects of Ginkgo biloba extract. Cell Mol Life Sci 2003;60:1779-1792.
66. Kim YS, Park HJ, Kim TK, Moon DE, Lee HJ. The effects of Ginkgo biloba extract EGb 761 on mechanical and cold allodynia in a rat model of neuropathic pain. Anesth Analg 2009;108:1958-1963.
67. Taliyan R, Sharma P. Protective effect and potential mechanism of Ginkgo biloba extract EGb 761 on STZ‐induced neuropathic pain in rats. Phytother Res 2012;26:1823-1829.
68. Takayama H. Chemistry and pharmacology of analgesic indole alkaloids from the rubiaceous plant, Mitragyna speciosa. Chem Pharm Bull 2004;52:916-928.
69. Carpenter JM, Criddle CA, Craig HK, Ali Z, Zhang Z, Khan IA, et al. Comparative effects of Mitragyna speciosa extract, mitragynine, and opioid agonists on thermal nociception in rats. Fitoterapia 2016;109:87-90.
70. Matsumoto K, Narita M, Muramatsu N, Nakayama T, Misawa K, Kitajima M, et al. Orally active opioid μ/δ dual agonist MGM-16, a derivative of the indole alkaloid mitragynine, exhibits potent antiallodynic effect on neuropathic pain in mice. J Pharmacol Exp Ther 2014;348:383-392.
71. Basch E, Gabardi S, Ulbricht C. Bitter melon (Momordica charantia): a review of efficacy and safety. Am J Health Syst Pharm 2003;60:356-359.
72. Jain V, Pareek A, Paliwal N, Ratan Y, Jaggi AS, Singh N. Antinociceptive and antiallodynic effects of Momordica charantia L. in tibial and sural nerve transection-induced neuropathic pain in rats. Nutr Neurosci 2014;17:88-96.
73. Amin B, Hosseinzadeh H. Black cumin (Nigella sativa) and its active constituent, thymoquinone: an overview on the analgesic and anti-inflammatory effects. Planta Med 2016;82:8-16.
74. Javidi S, Razavi BM, Hosseinzadeh H. A review of neuropharmacology effects of Nigella sativa and its main component, thymoquinone. Phytother Res 2016;30:1219-1229.
75. Forouzanfar F, Fazly Bazzaz BS, Hosseinzadeh H. Black cumin (Nigella sativa) and its constituent (thymoquinone): a review on antimicrobial effects. Iran J Basic Med Sci 2014;17:929–938.
76. Kanter M. Effects of Nigella sativa and its major constituent, thymoquinone on sciatic nerves in experimental diabetic neuropathy. Neurochem Res 2008;33:87-96.
77. Amin B, Taheri M, Hosseinzadeh H. Effects of intraperitoneal thymoquinone on chronic neuropathic pain in rats. Planta medica 2014;80:1269-1277.
78. Tewari S, Salman M, Thadani S, Singh S, Ahmad A. A study of pregabalin, tramadol, their combination and Nigella sativa in neuropathic pain in rats. Int J Pharm Sci Res 2015;6:4406.
79. Kaur G, Jaggi AS, Singh N. Exploring the potential effect of Ocimum sanctum in vincristine-induced neuropathic pain in rats. J Brachial Plex Peripher Nerve Inj 2010;5:3.
80. Muthuraman A, Diwan V, Jaggi AS, Singh N, Singh D. Ameliorative effects of Ocimum sanctum in sciatic nerve transection-induced neuropathy in rats. J Ethnopharmacol 2008;120:56-62.
81. Kaur G, Bali A, Singh N, Jaggi AS. Ameliorative potential of Ocimum sanctum in chronic constriction injury-induced neuropathic pain in rats. Anais da Academia Brasileira de Ciências 2015;87:417-429.
82. Kassuya CA, Silvestre AA, Rehder VLG, Calixto JB. Anti-allodynic and anti-oedematogenic properties of the extract and lignans from Phyllanthus amarus in models of persistent inflammatory and neuropathic pain. Eur J Pharmacol 2003;478:145-153.
83. Nucci-Martins C, Martins DF, Nascimento LF, Venzke D, Oliveira AS, Frederico MJ, et al. Ameliorative potential of standardized fruit extract of Pterodon pubescens Benth on neuropathic pain in mice: Evidence for the mechanisms of action. J Ethnopharmacol 2015;175:273-286.
84. Hoscheid J, Bersani-Amado CA, da Rocha BA, Outuki PM, da Silva MARCP, Froehlich DL, et al. Inhibitory effect of the hexane fraction of the ethanolic extract of the fruits of Pterodon pubescens Benth in acute and chronic inflammation. Evid Based Complement Alternat Med 2013;2013:272795.
85. Al-Sereiti M, Abu-Amer K, Sena P. Pharmacology of rosemary (Rosmarinus officinalis Linn.) and its therapeutic potentials. Indian J Exp Biol 1999;37:124-130.
86. Yu M-H, Choi J-H, Chae I-G, Im H-G, Yang S-A, More K, et al. Suppression of LPS-induced inflammatory activities by Rosmarinus officinalis L. Food Chem 2013;136:1047-1054.
87. Ghasemzadeh Rahbardar M, Mehri S, Mirnajafi-Zadeh SJ, Hosseinzadeh H. Anti-inflammatory effects of ethanolic extract of Rosmarinus officinalis L. and rosmarinic acid in a rat model of neuropathic pain. Biomed Pharmacother 2017;86:441-449.
88. Ghasemzadeh M, Amin B, Mehri S, Mirnajafi-Zadeh SJ, Hosseinzadeh H. Effect of alcoholic extract of aerial parts of Rosmarinus officinalis L. on pain, inflammation and apoptosis induced by chronic constriction injury (CCI) model of neuropathic pain in rats. J Ethnopharmacol 2016;194:117-130.
89. Patel A, Patel T, Macwan C, Patel M, Chauhan K, Patel J. Evaluation of Anti-inflammatory and Analgesic activity of roots of Rubia cordifolia in rats. Journal of Pharmaceutical Sciences and Research 2010;2:809-813.
90. Diwane C, Patil R, Vyavahare P, Bhambar R. Protective effect of Rubia cordifolia in paclitaxel-induced neuropathic pain in experimental animals. Indian J Pain 2015;29:150-154.
91. Mansourabadi AH, Sadeghi HM, Razavi N, Rezvani E. Anti-inflammatory and analgesic properties of Salvigenin, Salvia officinalis flavonoid extracted. Advanced Herbal Medicine 2015;1:31-41.
92. Hohmann J, Zupkó I, Rédei D, Csányi M, Falkay G, Máthé I, et al. Protective effects of the aerial parts of Salvia officinalis, Melissa officinalis and Lavandula angustifolia and their constituents against enzyme-dependent and enzyme-independent lipid peroxidation. Planta Med 1999;65:576-578.
93. Qnais EY, Abu-Dieyeh M, Abdulla FA, Abdalla SS. The antinociceptive and anti-inflammatory effects of Salvia officinalis leaf aqueous and butanol extracts. Pharm Biol 2010;48:1149-1156.
94. Rodrigues MRA, Kanazawa LKS, Das Neves TLM, Da Silva CF, Horst H, Pizzolatti MG, et al. Antinociceptive and anti-inflammatory potential of extract and isolated compounds from the leaves of Salvia officinalis in mice. J Ethnopharmacol 2012;139:519-526.
95. Abad ANA, Nouri MHK, Tavakkoli F. Effect of Salvia officinalis hydroalcoholic extract on vincristine-induced neuropathy in mice. Chin J Nat Med 2011;9:354-358.
96. Comelli F, Giagnoni G, Bettoni I, Colleoni M, Costa B. Antihyperalgesic effect of a Cannabis sativa extract in a rat model of neuropathic pain: mechanisms involved. Phytother Res 2008;22:1017-1024.
97. Rog DJ, Nurmikko TJ, Young CA. Oromucosal Δ 9-tetrahydrocannabinol/cannabidiol for neuropathic pain associated with multiple sclerosis: an uncontrolled, open-label, 2-year extension trial. Clin Ther 2007;29:2068-2079.
98. Ellis RJ, Toperoff W, Vaida F, Van Den Brande G, Gonzales J, Gouaux B, et al. Smoked medicinal cannabis for neuropathic pain in HIV: a randomized, crossover clinical trial. Neuropsychopharmacology 2009;34:672-680.
99. Johnson JR, Burnell-Nugent M, Lossignol D, Ganae-Motan ED, Potts R, Fallon MT. Multicenter, double-blind, randomized, placebo-controlled, parallel-group study of the efficacy, safety, and tolerability of THC: CBD extract and THC extract in patients with intractable cancer-related pain. J Pain Symptom Manage 2010;39:167-179.
100. Johnson JR, Lossignol D, Burnell-Nugent M, Fallon MT. An open-label extension study to investigate the long-term safety and tolerability of THC/CBD oromucosal spray and oromucosal THC spray in patients with terminal cancer-related pain refractory to strong opioid analgesics. J Pain Symptom Manage 2013;46:207-218.
101. Serpell M, Ratcliffe S, Hovorka J, Schofield M, Taylor L, Lauder H, et al. A double‐blind, randomized, placebo‐controlled, parallel group study of THC/CBD spray in peripheral neuropathic pain treatment. Eur J Pain 2014;18:999-1012.
102. Hoggart B, Ratcliffe S, Ehler E, Simpson K, Hovorka J, Lejcko J, et al. A multicentre, open-label, follow-on study to assess the long-term maintenance of effect, tolerance and safety of THC/CBD oromucosal spray in the management of neuropathic pain. J Neurol 2015;262:27-40.
103. Taki M, Omiya Y, Suzuki Y, Ikeda Y, Noguchi M, Matuba T, et al. Quality and pharmacological investigation of processed Aconiti tuber (JT-3022). Nat Med 1998;52:343-352.
104. Murayama M, Mori T, Bando H, Amiya T. Studies on the constituents of Aconitum species. IX. The pharmacological properties of pyro-type aconitine alkaloids, components of processed aconite powder ‘kako-bushi-matsu’: analgesic, antiinflammatory and acute toxic activities. J Ethnopharmacol 1991;35:159-164.
105. Feng L, Liu W-K, Deng L, Tian J-X, Tong X-L. Clinical efficacy of aconitum-containing traditional Chinese medicine for diabetic peripheral neuropathic pain. Am J Chin Med 2014;42:109-117.
106. Singhuber J, Zhu M, Prinz S, Kopp B. Aconitum in traditional Chinese medicine—a valuable drug or an unpredictable risk? J Ethnopharmacol 2009;126:18-30.  
107. Ou S, Zhao Y-D, Xiao Z, Wen H-Z, Cui J, Ruan H-Z. Effect of lappaconitine on neuropathic pain mediated by P2X 3 receptor in rat dorsal root ganglion. Neurochem Int 2011;58:564-573.
108. Moon E, Lee SO, Kang TH, Kim HJ, Choi SZ, Son M-W, et al. Dioscorea extract (DA-9801) modulates markers of peripheral neuropathy in type 2 diabetic db/db mice. Biomol Ther 2014;22:445-452.
109. Maithili V, Dhanabal S, Mahendran S, Vadivelan R. Antidiabetic activity of ethanolic extract of tubers of Dioscorea alata in alloxan induced diabetic rats. Indian J Pharmacol 2011;43:455.
110. Gao X, Li B, Jiang H, Liu F, Xu D, Liu Z. Dioscorea opposita reverses dexamethasone induced insulin resistance. Fitoterapia 2007;78:12-15.
111. Choi S-Z, Son M-W. Novel botanical drug for the treatment of diabetic neuropathy. Arch Pharm Res 2011;34:865-867.
112. Kono T, Hata T, Morita S, Munemoto Y, Matsui T, Kojima H, et al. Goshajinkigan oxaliplatin neurotoxicity evaluation (GONE): a phase 2, multicenter, randomized, double-blind, placebo-controlled trial of goshajinkigan to prevent oxaliplatin-induced neuropathy. Cancer Chemother Pharmacol 2013;72:1283-1290.
113. Watanabe K, Shimada A, Miyaki K, Hirakata A, Matsuoka K, Omae K, et al. Long-term effects of Goshajinkigan in prevention of diabetic complications: a randomized open-labeled clinical trial. Evid Based Complement Alternat Med 2014;2014.
114. Wang M-L, Yu G, Yi S-P, Zhang F-Y, Wang Z-T, Huang B, et al. Antinociceptive effects of incarvillateine, a monoterpene alkaloid from Incarvillea sinensis, and possible involvement of the adenosine system. Sci Rep 2015;5:16107.
115. Nakamura M, Chi Y-M, Yan W-M, Nakasugi Y, Yoshizawa T, Irino N, et al. Strong antinociceptive effect of incarvillateine, a novel monoterpene alkaloid from Incarvillea sinensis. J Nat Prod 1999;62:1293-1294.
116. Chi Y-M, Nakamura M, Yoshizawa T, Zhao X-Y, Yan W-M, Hashimoto F, et al. Pharmacological study on the novel antinociceptive agent, a novel monoterpene alkaloid from Incarvillea sinensis. Biol Pharm Bull 2005;28:1989-1991.
117. Jin G-L, Su Y-P, Liu M, Xu Y, Yang J, Liao K-J, et al. Medicinal plants of the genus Gelsemium (Gelsemiaceae, Gentianales)—a review of their phytochemistry, pharmacology, toxicology and traditional use. J Ethnopharmacol 2014;152:33-52.
118. Qiu H-Q, Xu Y, Jin G-L, Yang J, Liu M, Li S-P, et al. Koumine enhances spinal cord 3α-hydroxysteroid oxidoreductase expression and activity in a rat model of neuropathic pain. Mol Pain 2015;11:1-13.
119. Ling Q, Liu M, Wu M-X, Xu Y, Yang J, Huang H-H, et al. Anti-allodynic and neuroprotective effects of koumine, a Benth alkaloid, in a rat model of diabetic neuropathy. Biol Pharm Bull 2014;37:858-864.
120. Kandhare AD, Raygude KS, Ghosh P, Ghule AE, Bodhankar SL. Neuroprotective effect of naringin by modulation of endogenous biomarkers in streptozotocin induced painful diabetic neuropathy. Fitoterapia 2012;83:650-659.
121. Hu CY, Zhao YT. Analgesic effects of naringenin in rats with spinal nerve ligation‑induced neuropathic pain. Biomed Rep 2014;2:569-573.
122. Liu X, Liu M, Mo Y, Peng H, Gong J, Li Z, et al. Naringin ameliorates cognitive deficits in streptozotocin-induced diabetic rats. Iran J Basic Med Sci 2016;19:411-416.
123.  Anjaneyulu M, Chopra K. Quercetin, a bioflavonoid, attenuates thermal hyperalgesia in a mouse model of diabetic neuropathic pain. Prog Neuropsychopharmacol Biol Psychiatry 2003;27:1001-1005.
124. Qu L, Liang X, Gu B, Liu W. Quercetin alleviates high glucose-induced Schwann cell damage by autophagy. ‎Neural Regener Res 2014;9:1195-203.
125. Elbe H, Vardi N, Esrefoglu M, Ates B, Yologlu S, Taskapan C. Amelioration of streptozotocin-induced diabetic nephropathy by melatonin, quercetin, and resveratrol in rats. Hum Exp Toxicol 2015;34:100-113.
126. Civi S, Emmez G, Dere UA, Borcek AO, Emmez H. Effects of quercetin on chronic constriction nerve injury in an experimental rat model. Acta Neurochir 2016;158:959-965.