Mild exercise along with limb blood-flow restriction modulates the electrocardiogram, angiotensin, and apelin receptors of the heart in aging rats

Document Type: Original Article

Authors

1 Department of Physiology and Pharmacology, Kerman University of Medical Sciences, Kerman, Iran

2 Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran

3 Cardiovascular Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Science, Kerman, Iran

4 Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran

Abstract

Objective(s): Considering the lack of information, the effects of mild endurance exercise plus blood flow restriction (BFR) on electrocardiographic parameters, hypertrophy index, and expression of angiotensin II receptors type 1 (AT1R) and type 2 (AT2R) and apelin receptor (APJ) were assessed in hearts of old male rats.
Materials and Methods: Animal were grouped as control (CTL), Sham (Sh), lower extremities blood flow restriction (BFR), exercise (Ex), Sham + exercise (Sh + Ex), and blood flow restriction + exercise (BFR + Ex).
Results: Exercise plus BFR significantly decreased the corrected QT (QTc) interval (PConclusion: Mild endurance exercise plus BFR can alter the expression of angiotensin II and apelin receptors that leads to cardiac hypertrophy and improves the ventricular conductivity of aging rats.

Keywords

Main Subjects


1. Medicine ACoS. ACSM’s guidelines for exercise testing and prescription: Lippincott Williams & Wilkins; 2013.
2. Baravati HG, Joukar S, Fathpour H, Kordestani Z. Nandrolone plus moderate exercise increases the susceptibility to lethal arrhythmias. Res Cardiovasc Med 2015; 4:e26233.
3. Loenneke JP, Wilson JM, Marín PJ, Zourdos MC, Bemben MG. Low intensity blood flow restriction training: a meta-analysis. Eur J Appl Physiol. 2012;112:1849-1859.
4. Laurentino G, Ugrinowitsch C, Aihara A, Fernandes A, Parcell A, Ricard M, et al. Effects of strength training and vascular occlusion. Int J Sports Med. 2008;29:664-667.
5. Takarada Y, Sato Y, Ishii N. Effects of resistance exercise combined with vascular occlusion on muscle function in athletes. Eur J Appl Physiol. 2002;86:308-314.
6. Takarada Y, Takazawa H, Sato Y, Takebayashi S, Tanaka Y, Ishii N. Effects of resistance exercise combined with moderate vascular occlusion on muscular function in humans. J Appl Physiol 2000;88:2097-2106.
7. Renzi CP, Tanaka H, Sugawara J. Effects of leg blood flow restriction during walking on cardiovascular function. Med Sci Sports Exerc. 2010 ;42:726-732.
8. Abe T, Kearns CF, Sato Y. Muscle size and strength are increased following walk training with restricted venous blood flow from the leg muscle, Kaatsu-walk training. J Appl Physiol 2006;100:1460-1466.
9. Boluyt MO, Cirrincione GM, Loyd AM, Korzick DH, Parker JL, Laughlin MH. Effects of gradual coronary artery occlusion and exercise training on gene expression in swine heart. Mol Cell Biochem. 2007 ;294:87-96.
10. Neto GR, Sousa MS, Costa e Silva GV, Gil AL, Salles BF, Novaes JS. Acute resistance exercise with blood flow restriction effects on heart rate, double product, oxygen saturation and perceived exertion. Clin Physiol Funct Imaging. 2016;36:53-59.
11. Abe T, Sakamaki M, Fujita S, Ozaki H, Sugaya M, Sato Y, et al. Effects of low-intensity walk training with restricted leg bloodflow on muscle strength and aerobic capacity in older adults. J Geriatr Phys Ther. 2010;33:34-40.
12. Abe T, Kearns C, Fujita S, Sakamaki M, Sato Y, Brechue W. Skeletal muscle size and strength are increased following walk training with restricted leg muscle blood flow: implications for training duration and frequency. Int  J KAATSU Training Res 2009; 5:9-15.
13. Abe T, Kearns C, Sato Y, McKEEVER K. Muscle, tendon, and somatotropin responses to the restriction of muscle blood flow induced by KAATSU‐walk training. Equine Vet J Suppl 2006; 38:345-348.
14. Cezar MA, De Sá CA, Corralo VdS, Copatti SL, Santos GAGd, Grigoletto MEdS. Effects of exercise training with blood flow restriction on blood pressure in medicated hypertensive patients. Motriz 2016; 22:9-17.
15. Vieira PJ, Chiappa GR, Umpierre D, Stein R, Ribeiro JP. Hemodynamic responses to resistance exercise with restricted blood flow in young and older men. J Strength Cond Res 2013; 27:2288-2294.
16. Takarada Y, Nakamura Y, Aruga S, Onda T, Miyazaki S, Ishii N. Rapid increase in plasma growth hormone after low-intensity resistance exercise with vascular occlusion. J Appl Physiol 2000; 88:61-65.
17. Waldow T, Alexiou K, Witt W, Albrecht S, Wagner F, Knaut M, et al. Protection against acute porcine lung ischemia/reperfusion injury by systemic preconditioning via hind limb ischemia. Transpl Int 2005; 18:198-205.
18. Wolfrum S, Schneider K, Heidbreder M, Nienstedt J, Dominiak P, Dendorfer A. Remote preconditioning protects the heart by activating myocardial PKCϵ-isoform. Cardiovasc Res 2002; 55:583-589.
19. Fernandes T, Hashimoto NY, Magalhaes FC, Fernandes FB, Casarini DE, Carmona AK, et al. Aerobic exercise traininginduced left ventricular hypertrophyinvolves regulatory MicroRNAs, decreased angiotensin-converting enzyme-angiotensin ii,and synergistic regulation of angiotensinconverting enzyme  2-angiotensin (1-7). Hypertension. 2011;58:182-189.
20. Zhang J, Ren CX, Qi YF, Lou LX, Chen L, Zhang LK, et al. Exercise training promotes expression of apelin and APJ of cardiovascular tissues in spontaneously hypertensive rats. Life Sci 2006; 79:1153-1159.
21. Lee Y, Kwak H-B, Hord J, Kim J-H, Lawler JM. Exercise training attenuates age-dependent elevation of angiotensin II type 1 receptor and Nox2 signaling in the rat heart. Exp Gerontol 2015; 70:163-173.
22. Chandrasekaran B, Dar O, McDonagh T. The role of apelin in cardiovascular function and heart failure. Eur J Heart Fail 2008; 10:725-732.
23. Lorell BH. Role of angiotensin AT 1 and AT 2 receptors in cardiac hypertrophy and disease. Am J Cardiol 1999; 83:48-52.
24. Cao X-j, Li Y-f. Alteration of messenger RNA and protein levels of cardiac alpha (1)-adrenergic receptor and angiotensin II receptor subtypes during aging in rats. Can J Cardiol 2009; 25:415-420.
25. Feng F, Pan W-n, Chen F, Qin X-p, Zhang X-h, Li F, et al. Changes in expressions of Apelin-APJ receptor during the growth and aging of rat myocardium. Chin Pharmacol Bul 2008; 24:299.
26. Vahidi R, Joukar S. Commentary: Acute myocardial response to stretch: What we (don’t) know. Front Physiol 2017; 8:121.
27. Iwanaga Y, Kihara Y, Takenaka H, Kita T. Down-regulation of cardiac apelin system in hypertrophied and failing hearts: possible role of angiotensin II–angiotensin type 1 receptor system. J Mol Cell Cardiol 2006; 41:798-806.
28. Joukar S, Zarisfi Z, Sepehri G, Bashiri A. Efficacy of Melissa officinalis in suppressing ventricular arrhythmias following ischemia-reperfusion of the heart: a comparison with amiodarone. Med Princ  Pract 2014; 23:340-345.
29. Yang H, Ogilvie RW, Terjung RL. Low-intensity training produces muscle adaptations in rats with femoral artery stenosis. J Appl Physiol  1991; 71:1822-1829.
30. Mathien GM, Terjung RL. Influence of training following bilateral stenosis of the femoral artery in rats. Am J Physiol. 1986; 250:H1050-H1059.
31. Deschenes MR, Roby MA, Glass EK. Aging influences adaptations of the neuromuscular junction to endurance training. Neuroscience 2011; 190:56-66.
32. Pour M-AB, Joukar S, Hovanloo F, Najafipour H. Long-term low-intensity endurance exercise along with blood-flow restriction improves muscle mass and neuromuscular junction compartments in old rats. Iran J Med Sci 2017; 42:569-576.
33. Binayi F, Joukar S, Najafipour H, Karimi A, Abdollahi F, Masumi Y. The effects of nandrolone decanoate along with prolonged low-intensity exercise on susceptibility to ventricular arrhythmias. Cardiovasc Toxicol 2016; 16:23-33.
34. Abdollahi F, Joukar S, Najafipour H, Karimi A, Masumi Y, Binayi F. The risk of life-threatening ventricular arrhythmias in presence of high-intensity endurance exercise along with chronic administration of nandrolone decanoate. Steroids 2016; 105:106-112.
35. Japp AG, Newby DE. The apelin–APJ system in heart failure: pathophysiologic relevance and therapeutic potential. Biochem Pharmacol 2008; 75:1882-1892.
36. Jesmin S, Sakuma I, Togashi H, Yoshioka M, Hattori Y, Kitabatake A, et al. Effects of endothelin receptor antagonist on expression of AT1 and AT2 receptors in the heart of SHR-SP. J Cardiovasc Pharmacol 2004; 44:S59-S63.
37. Medeiros A, Oliveira EMd, Gianolla R, Casarini DE, Negrão C, Brum PC. Swimming training increases cardiac vagal activity and induces cardiac hypertrophy in rats. Braz J Med Biol Res 2004; 37:1909-1917.
38. Rabkin SW, Cheng X-BJ, Thompson DJ. Detailed analysis of the impact of age on the QT interval. J Geriatr Cardiol 2016; 13:740.
39. Satoh I. Kaatsu training: application to metabolic syndrome. Int  J KAATSU Training Res 2011; 7:7-12.
40. Barretti DLM, de Castro Magalhães F, Fernandes T, do Carmo EC, Rosa KT, Irigoyen MC, et al. Effects of aerobic exercise training on cardiac renin-angiotensin system in an obese Zucker rat strain. PloS one 2012; 7:e46114.
41. Kim Y-I, Paik I-Y, Jin H-E, Suh A-R, Kwak Y-S, Woo J-H. Effects of 12 week regular aerobic exercise on ST-segment and QTc interval in type 2 diabetes mellitus patients. J Life Sci 2009; 19:81-86.
42. McLenachan JM, Henderson E, Morris KI, Dargie HJ. Ventricular arrhythmias in patients with hypertensive left ventricular hypertrophy. N Engl J Med 1987; 317:787-792.
43. Woodiwiss AJ, Norton GR. Exercise-induced cardiac hypertrophy is associated with an increased myocardial compliance. J Appl Physiol 1995; 78:1303-1311.
44. Bayat GR, Hajizadeh S, Javan M, Safari F, Goodarzvand M, Shokri S, et al. Effect of exercise and chronic administration of nandrolone decanoate on expression of rat heart sarcolemmal ATP-sensitive potassium channels. Feyz 2012; 16:102-111
45. Siragy HM. The role of the AT 2 receptor in hypertension. Am J Hypertens 2000; 13:S62-S67.
46. Carey RM, Wang Z-Q, Siragy HM. Role of the angiotensin type 2 receptor in the regulation of blood pressure and renal function. Hypertension 2000; 35:155-163.
47. Zhu YC, Zhu YZ, Lu N, Wang MJ, Wang YX, Yao T. Role of angiotensin AT1 and AT2 receptors in cardiac hypertrophy and cardiac remodelling. Clin Exp Pharmacol Physiol 2003; 30:911-918.
48. Cox CM, D’Agostino SL, Miller MK, Heimark RL, Krieg PA. Apelin, the ligand for the endothelial G-protein-coupled receptor, APJ, is a potent angiogenic factor required for normal vascular development of the frog embryo. Dev Biol 2006; 296:177-189.
49. Scott IC, Masri B, D’Amico LA, Jin S-W, Jungblut B, Wehman AM, et al. The g protein-coupled receptor agtrl1b regulates early development of myocardial progenitors. Dev Cell 2007; 12:403-413.
50. Yi Y. Expression and function of APELA: a potential regulator of cell growth in human cancers (a Thesis): University of British Columbia; 2016.
51. Sato T, Suzuki T, Watanabe H, Kadowaki A, Fukamizu A, Liu PP, et al. Apelin is a positive regulator of ACE2 in failing hearts. J Clin Invest 2013; 123:5203-5211.