Mild hypoxia and human bone marrow mesenchymal stem cells synergistically enhance expansion and homing capacity of human cord blood CD34+ stem cells

Document Type: Original Article


1 Department of Hematology and Blood Banking, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran

2 Stem cell and Tissue Engineering Research Center, Shahroud University of Medical Sciences, Shahroud, Iran


Objective(s): Cord blood (CB) is known as a valuable source of hematopoietic stem cells (HSC). Identifying strategies that enhance expansion and maintain engraftment and homing capacity of HSCs can improve transplant efficiency. In this study, we examined different culture conditions on ex vivo expansion and homing capacity of CB-HSCs.
Materials and Methods: In this study, 4-5 different units of human CB in each of 3 independent experiments were collected.CD34+ HSC was isolated, cultured in the serum-free medium(Stem line II) and supplemented with cytokines: FMS-like tyrosine kinase 3 ligand (FLt3L), Thrombopoietin (TPO), stem cell factor (SCF) with/without bone marrow mesenchymal stem cell (BM-MSC) feeder layer in normoxia (20% O2) and mild hypoxia (5% O2) for 7 days. Before and after this period, total nucleated cell count (TNC), CD34+ cells count, Colony-forming cell (CFC) assay, migration assay and CXCR4 expression were evaluated by real time PCR. Data analysis was performed with t- test and ANOVA. P-value less than 0.05 was considered as statistically significant differences.
Results: At the end of 7 days of culture, the highest count of TNC, CD34+ cells, CFUs, migration percentage and CXCR4 mRNA level were observed in feeder+cytokine group at 5% O2 tension. Our findings demonstrated statistically significant (1.7-3.2 fold) increase of CXCR4 gene expression in hypoxia versus normoxia.
Conclusion: Combination of BM-MSC and mild hypoxia (5% O2) not only improves HSC expansion but also enhances homing capacity of HSC and better mimickes the niche microenvironment conditions.


Main Subjects

1. Wang LD, Wagers AJ. Dynamic niches in the origination and differentiation of haematopoietic stem cells. Nat Rev Mol Cell Biol 2011; 12: 643-655.
2. Mendelson A, Frenette PS. Hematopoietic stem cell niche maintenance during homeostasis and regeneration. Nat Med 2014; 20: 833-846.
3. Lilly AJ, Johnson WE, Bunce CM. The haematopoietic stem cell niche: new insights into the mechanisms regulating haematopoietic stem cell behaviour. Stem Cells Int 2011; 2011: 274-275.
4. Shizuru JA, Negrin RS, Weissman IL. Hematopoietic stem and progenitor cells: clinical and preclinical regeneration of the hemato-lymphoid system. Annu Rev Med 2005; 56: 509-538.
5. Hordyjewska A, Popiołek Ł, Horecka A. Characteristics of hematopoietic stem cells of umbilical cord blood. Cytotechnology 2015;67:387-396.
6. Jacobson CA, Turki AT, McDonough SM, Stevenson  KE, Kim  HT, Kao  G, et al. Immune reconstitution after double umbilical cord blood stem cell transplantation: comparison with unrelated peripheral blood stem cell transplantation. Biol Blood Marrow Transplant  2012;18:565-574.
7. Majhail NS, Brunstein CG, Tomblyn M, Thomas AJ, Miller JS, Arora M, et al. Reduced-intensity allogeneic transplant in patients older than 55 years: unrelated umbilical cord blood is safe and effective for patients without a matched related donor. Biol Blood Marrow Transplant  2008;14:282-289.
8. Brunstein CG, Gutman JA, Weisdorf DJ, Woolfrey AE, Defor TE, Gooley TA, et al. Allogeneic hematopoietic cell transplantation for hematologic malignancy:relative risks and benefits of double umbilical cord blood. Blood 2010;116:4693-4699.
9. Tanavde VM, Malehorn MT, Lumkul R, Gao Z, Wingard J, Garrett ES, et al. Human stem-progenitor cells from neonatal cord blood have greater hematopoietic expansion capacity than those from mobilized adult blood. Exp Hematol 2002;30:816– 823.
10. Mendez-Ferrer S. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 2010;466:829–834.
11. Jing D, Fonseca AV, Alakel N, Fierro FA,  Muller K,  Bornhauser  M, et al. Hematopoietic stem cells in co-culture with mesenchymal stromal cells - modeling the niche compartments in vitro. Haematologica 2010;95:542-550.
12. Majumdar MK, Thiede MA, Mosca JD, Moorman M, Gerson SL. Phenotypic and functional comparison of cultures of marrow-derived mesenchymal stem cells (MSCs) and stromal cells. J Cell Physiol 1998;176:57-66.
13. Dellatore SM, Garcia AS, Miller WM . Mimicking stem cell niches to increase stem cell expansion. Curr Opin Biotechnol  2008, 19:534–540.
14. Hermitte F, Brunet GP, Belloc F, Praloran V, Ivanovic Z. Very low O2 concentration (0.1%) favors G0 return of dividing CD34+ cells. Stem Cells 2006; 24: 65-73.
15. Tiwari A, Wong CS, Nekkanti LP, Deane JA, McDonald C, Jenkin G, et al. Impact of oxygen levels on human hematopoietic stem and progenitor cell expansion. Stem Cells Dev  2016 ;25: 1604-1613.
16. Cipolleschi MG, Rovida E, Ivanovic Z, Praloran V, Olivotto M, Delo Sbarba P. The expansion of murine bone marrow cells preincubated in hypoxia as an in vitro indicator of their marrow-repopulating ability.Leukemia 2000; 14: 735-739.
17. Ivanović Z, Bartolozzi B, Bernabei PA, Cipolleschi MG, Rovida  E, Milenković  P, et al. Incubation of murine bone marrow cells in hypoxia ensures the maintenance of marrow-repopulating activity together with the expansion of committed progenitors. Br J Haematol  2000; 108: 424-429.
18. Zhang CC, Sadek HA. Hypoxia and metabolic properties of hematopoietic stem cells. Antioxid Redox Signal 2014;20:1891-1901.
19. Denning-Kendall P, Singha S, Bradley B, Hows J. Cytokine expansion culture of cord blood CD34+ cells induces marked and sustained changes in adhesion receptor and CXCR4 expressions.Stem Cells 2003; 21: 61–70.
20. Asfour I, Afify H, Elkourashy S, Ayoub M, Kamal G, Gamal M, et al. CXCR4 (CD184) expression on stem cell harvest and CD34+ cells post-transplant. Hematol Oncol Stem Cell Ther 2017;10:63-69.
21. Ceradini DJ, Kulkarni AR, Callaghan MJ, Tepper OM, Bastidas N, Kleinman ME, et al. Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med 2004; 10:858–864.
22. Yellowley C. CXCL12/CXCR4 signaling and other recruitment and homing pathways in fracture repair. Bonekey rep 2013; 13:300-309.
23. Pfaffl MW. A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res 2001; 29:e45.
24. Möbest D, Mertelsmann R, Henschler R. Serum free ex vivo expansion of CD34(+)  hematopoietic progenitor cells. Biotechnol Bioeng 1998; 60: 341-347.
25. Lebkowski JS, Schain LR, Okarma TB. Serum-free culture of hematopoietic stem cells: a review.Stem Cells 1995; 13: 607-612.
26. Zheng Y, Sun A, Han ZC. Stem cell factor improves SCID repopulating activity of human umbilical cord blood-derived hematopoietic stem/progenitor cells in xenotransplanted NOD/SCID mouse model. Bone Marrow Transplant 2005;35:137–142.
27. Oubari F, Amirizade N, Mohammadpour H, Nakhlestani M, Zarif MN. The important role of FLT3-L in Ex vivo expansion of hematopoietic stem cells following co-culture with mesenchymal stem cells. Cell J 2015;17(2):201-210.
28. Levac K, Karanu F, Bhatia M. Identification of growth factor conditions that reduce ex vivo cord blood progenitor expansion but do not alter human repopulating cell function in vivo. Haematologica 2005; 90:166–172.
29. Goyama S, Mulloy JC. Making Healthy Stem Cells: The New Role of TPO .Cell Stem Cell 2013;12(1):8-9.
30. Gammaitoni L, Weisel KC, Gunetti M, Wu KD, Bruno S, Pinelli S, et al. Elevated telomerase activity and minimal telomere loss in cord blood long-term cultures with extensive stem cell replication. Blood 2004; 103:4440–4448.
31. Boitano AE, Wang J, Romeo R,  Bouchez LC, Parker AE, Sutton SE, et al. Aryl hydrocarbon receptor antagonists promote the expansion of human hematopoietic stem cells. Science  2010;329:1345–1348.
32. Wilson A, Oser GM, Jaworski M,  Blanco-Bose WE, Laurenti E, Adolphe C, et al. Dormant and self renewing hematopoietic stem cells and their niches. Ann N Y Acad Sci  2007; 1106:64-75.
33. Goncalves R, Lobato da Silva C, Cabral JM,  Zanjani ED, Almeida-Porada G. A Stro-1( + ) human universal stromal feeder layer to expand/maintain human bone marrow hematopoietic stem/progenitor cells in a serum-free culture system. Exp Hematol 2006;34:1353–1359.
34. Zhang Y, Chai C, Jiang XS,  Teoh SH, Leong KW. Co-culture of umbilical cord blood CD34 + cells with human mesenchymal stem cells. Tissue  Eng 2006;12:2161–2170.
35. Song Y, Bahnson A, Hall N, Yu H, Shen H, Koebler D,et al. Stem cell traits in long term co-culture revealed by time-lapse imaging. Leukemia 2010;24:153-161.
36. Walenda TH,  Bork S, Horn P, Wein F, Saffrich R, Diehlmann A, et al. Co‐culture with mesenchymal stromal cells increases proliferation and maintenance of haematopoietic progenitor cells. J Cell Mol Med 2010;14: 337-350.
37. Schmal O, Seifert J, Schäffer T.E, Walter C.B, Aicher W.K, Klein G. Hematopoietic stem and progenitor cell expansion in contact with mesenchymal stromal cells in a hanging drop model uncovers disadvantages of 3D culture. Stem Cells Int 2016 ; 4148093.
38. Chute JP, Saini AA, Chute DJ, Wells MR, Clark WB, Harlan DM, et al. Ex vivo culture with human brain endothelial cells increases the SCID-repopulating capacity of adult human bone marrow.Blood 2002;100:4433–4439.
39. Amirizadeh N,  Oodi A, Nikougoftar M, Soltanpour MS. Expression and promoter methylation changes of the P15INK4b during ex vivo cord blood CD34+ cell expansion following co-culture with mesenchymal stromal cells. Hematology 2013;18: 260-268.
40. Jang YY , Sharkis SJ . A low level of reactive oxygen species selects for primitive hematopoietic stem cells that may reside in the low-oxygenic niche. Blood 2007; 110:3056–3063.
41. Guitart AV, Hammoud M, Dello Sbarba P  ,Ivanovic Z, Praloran V. Slow-cycling/quiescence balance of hematopoietic stem cells is related to physiological gradient of oxygen. Exp Hematol 2010; 38: 847–851.
42. Danet GH, Pan Y, Luongo JL, Bonnet DA, Simon MC. Expansion of human SCID repopulating cells under hypoxic conditions. J Clin Invest 2003; 112:126–135.
43. Shima H, Takubo K, Iwasaki H, Yoshihara H, Gomei Y, Hosokawa K, et al. Reconstitution activity of hypoxic cultured human cord blood CD34-positive cells in NOG mice. Biochem Biophys Res Commun  2009; 378:467–472.
44.Voermans C, Kooi ML, Rodenhuis S, van der Lelie H, van der Schoot CE, Gerritsen WR. In vitro migratory capacity of CD34+ cells is related to hematopoietic recovery after autologous stem cell transplantation. Blood 2001;97:799-804.
45. Ratajczak MZ, Suszynska M. Emerging strategies to enhance homing and engraftment of hematopoietic stem cells. Stem Cell Rev and Rep 2016; 12: 121-128.
46. Brenner S, Whiting-Theobald N, Kawai T, Linton GF, Rudikoff AG, Choi U, et al. CXCR4-transgene expression significantly improves marrow engraftment of cultured hematopoietic stem cells. Stem Cells 2004; 22:1128-1133.
47. Kahn J, Byk T, Jansson-Sjostrand L, Petit I, Shivtiel S, Nagler A, et al. Overexpression of CXCR4 on human CD34+ progenitors increases their proliferation, migration, and NOD/SCID repopulation.Blood 2004; 103:2942-2949.
48. Speth JM, Hoggatt J, Singh P, Pelus LM. Pharmacologic increase in HIF1α enhances hematopoietic stem and progenitor homing and engraftment. Blood 2014;123:203-207
49. Hirota K, Semenza GL. Regulation of hypoxia-inducible factor 1 by prolyl and asparaginyl hydroxylases.Biochem Biophys Res Commun 2005;338:610–616.