Study of class 1 integrons in multidrug-resistant uropathogenic Escherichia coli isolated from different hospitals in Karachi

Document Type: Original Article


1 Dow University of Health Sciences, Karachi, Pakistan

2 Barrett Hodgson University, Karachi, Pakistan

3 Pakistan Council of Scientific & Industrial Research Laboratories Complex, Karachi, Pakistan

4 Department of Microbiology, University of Karachi, Karachi, Pakistan

5 Dada Bhoy Institute of Higher Education Commission, Karachi, Pakistan


Objective(s): Escherichia coli is the key pathogen in the family producing ESBL (extended spectrum β-lactamase) and associated with community-acquired infections. Therefore, this study was planned to determine the antibiotic susceptibility pattern of uropathogenic E. coli, prevalence of the ESBL gene group and class 1 integrons.
Materials and Methods: Clinical isolates of uropathogenic E. coli were isolated from different hospitals of Karachi. Antibiotic susceptibility test was performed by Kirby-Bauer Methods. Presence of β– lactamases genes (CTX, TEM, and SHV) and integron 1 were identified by polymerase chain reaction (PCR).
Results: Out of 500, 105 isolates were identified as multi-drug resistant (MDR) uropathogenic E. coli. The subject MDR isolates showed the highest resistance to aztreonam, amoxil/ clavulanic acid, ampicillin, cotrimoxazole, ceftriaxone, cefipime, and cefuroxime. Genetic analysis showed that the majority of the MDR E. coli carry CTX M1 (57.1%) followed by TEM (33.3%) and SHV (9.5%). Moreover, 79% of MDR E. coli harbored class 1 integrons, whereas all three conserved genes for class 1 integrons were present in 58% of MDR E. coli.
Conclusion: This study is helpful to provide information regarding the antibiotic susceptibility pattern, distribution ESBLs and class 1 integrons among uropathogenic E. coli.


Main Subjects

1. Tenaillon O, Skurnik D, Picard B, Denamur E. The population genetics of commensal Escherichia coli. Nat Rev Microbiol 2008; 8: 207–217.
2. Jarząb A, Górska-Frączek S, Rybka J, Witkowska D.  Enterobacteriaceae infection - diagnosis, antibiotic resistance and prevention. Postepy Hig Med Dosw 2011; 65: 55-72.
3. Laupland KB, Church DL, Vidakovich J, Mucenski M, Pitout JD. Community-onset extended-spectrum β-lactamase (ESBL)-producing Escherichia coli: importance of international travel.  J Infect 2008;57:441-448.
4. Mesa RJ, Blanc V, Blanch AR, Cortés P, González JJ, Lavilla S, et al. Extended-spectrum β-lactamase-producing Enterobacteriaceae in different environments (humans, food, animal farms, and sewage). J Antimicrob Chemother 2006; 58:211-215.
5. Knothe H, Shah P, Krcmery V, Antal M, Mitsuhashi S. Transferable resistance to cefotaxime, cefoxitin, cefamandole and cefuroxime in clinical isolates of Klebsiella pneumoniae  and Serratia marcescens. Infection 1983;11:315-317.
6. Bradford PA. Extended-spectrum β-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clin Microbiol Rev 2001; 14:933-951.
7. Rossi B, Soubirou JF, Chau J, Massias L, Dion S, Lepeule R,  et al. Cefotaxime and amoxicillin-clavulanate synergism against extended spectrum-lactamase-producing Escherichia coli in a Murine Model of Urinary Tract Infection. 2016;16:424-430.
8. Werner A. Horizontal gene transfer among bacteria and its role in biological evolution. Life 2014;4:217-224.
9. Tauxe RV, Cavanagh TR, Cohen ML. Interspecies gene transfer in vivo producing an outbreak of multiply resistant shigellosis. J Infect Dis 1998; 160: 1067-1070.
10. Recchia GD, Hall RM. Gene cassettes: a new class of mobile element. Microbiology 1995;141: 3015-3027.
11. Collis CM, Hall RM. Gene cassettes from the insert region of integrons are excised as covalently closed circles. Molecular Microbiology 1992; 6:2875–2885.
12. Martinez-Freijo P, Fluit AC, Schmitz F-J, Grek VSC, Verhoef J, Jones ME. Class 1 integrons in Gram-negative isolates from different European hospitals and association with decreased susceptibility to multiple antibiotic compounds. J Antimicrob Chemother 1998;42: 689-696.
13. Cockerill F, Patel J, Alder J, Bradford P, Dudley M, Eliopoulos G. Performance standards for antimicrobial susceptibility testing: twenty-third informational supplement; M100-S23. Wayne, PA: CLSI 2013.
14. Goldenberger D, Perschil I, Ritzler M, Altwegg M. A simple universal DNA extraction procedure using SDS and proteinase K is compatible with direct PCR amplification PCR Method Appl 1995;4:368-370.
15. Muyzer G, De Waal EC, Uitterlinden AG. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction amplified genes coding for 16S rRNA. Appl Environ Microbiol 1993; 59: 695-700.
16. Heninger A, Binder M, Schmidt S, Unertl K, Botzenhart K, Do Ring G. PCR and blood culture of Escherichia coli bacteremia in rats. Antmicrob Agents Chemother 1999; 37:2479–2482.
17. Kim J, Lim YM, Seol SY. Occurrence of CTX-M-3, CTX-M-15, CTX-M-14, and CTX-M-9 extended spectrum beta-lactamases in Enterobacteriaceae clinical isolates in Korea. Antimicrob Agents Chemother 2005; 49: 1572–1575.
18. Vercauteren E, Descheemaeker P, Ieven M, Sanders CC, Goossens H.  Comparison of screening methods for detection of extended-spectrum b-lactamases and their prevalence among blood isolates of Escherichia coli and Klebsiella spp. in a Belgian teaching hospital. J Clin Microbiol 1997; 35:2191–2197.
19. Gheldre YD, Avesani V, Berhin C, Delmée M, Glupczynski Y. Evaluation of Oxoid combination discs for detection of extended-spectrum b-lactamases. J Antimicrob Chemother 2003; 52:591–597.
20. Ebner P, Garner K, Mathew A. Class 1 integrons in various Salmonella enterica serovars isolated from animals and identification of genomic island SGI1 in Salmonella enterica var. Meleagridis. J Antimicrob Chemother 2004; 53:1004-1009.
21. Bush K. Alarming β-lactamase-mediated resistance in multidrug-resistant Enterobacteriaceae. Curr Opin Microbiol 2010;13: 558–564.
22. Sibhghatulla S, Jamale F, Shazi S, Syed M. Danish R, Mohammad AK. Antibiotic resistance and extended spectrum beta-lactamases: Types, epidemiology and treatment. Saudi J Biol Sci 2015; 12:90-101.
23. Ali I, Kumar N, Ahmed S, Dasti JI. Antibiotic resistance in uropathogenic E. coli strains isolated from non-hospitalized patients in Pakistan. J Clin Diagnostic Res 2014; 8:1-4.
24. Ziad D, Elie SS, Khalil M, Katia C, Nathaline HA , Ghassan MM, et al. Escherichia coli isolated from urinary tract infections of Lebanese patients between 2005 and 2012: epidemiology and profiles of resistance. Front Med 2015;1:1-11
25. Syed U, Shakirullah UA, Aaharullah IH, Wahab A, Rehman A. Prevalence and antibiotic susceptibility pattern of ESBL producing Gram negative rods causing nosocomial infection. Int J Res Pharm. Sci 2013; 4: 171-176
26. Gagliotti C, Balode A,  Baquero F,  Degener J,  Grundmann H, Gür D, et al. Escherichia coli and Staphylococcus aureus: bad news and good news from the European Antimicrobial Resistance Surveillance Network (EARS-Net, formerly EARSS), 2002 to 2009.  Euro Surveill 2011;17:16.
27. Bidel MR, Palchak M, Mohr J, Lodise TP. Fluoroquinolone and third-generation-cephalosporin resistance among hospitalized patients with urinary tract infections due to Escherichia coli: Do rates vary by hospital characteristics and geographic region? Antimicrob Agents Chemother 2016; 60: 3170–3173.
28. Sugawara Y, Akeda Y, Sakamoto N, Takeuchi D, Matooka D, Nakamora S, et al. Genetic characterization of blaNDM-harboring plasmids in carbapenem-resistant Escherichia coli from Myanmar. PLoS ONE 12: e0184720.
29. Robberts FJ, Kohner PC, Patel R . Unreliable extended-spectrum beta-lactamase detection in the presence of plasmid-mediated AmpC in Escherichia coli clinical isolates. J Clin Microbiol 2009; 47:358–361.
30. Rossolini GM, D’Andrea MM, Mugnaioli C. The spread of CTXM- type extended- spectrum betalactamases. Clin Microbiol Infect 2008; 14: 33- 41.
31. Bonnet R. Growing group of extended-spectrum β-lactamases: the CTX-M enzymes. Antimicrob Agents Chemother 2004; 48:1–14.
32. Helldal L, Karami N, Florén K, Welinder-Olsson C, Moore ERB, Åhrén C. Shift in CTX-M genotypes has determined the increased prevalence of extended-spectrum β-lactamase-producing Escherichia coli in south-western Sweden. Clin Microbiol Infect 2013;19: 87-90.
33. Goudarzi M, Sabzehali F, Tayebi Z, Azad M, Boromandi S, HashemiA, et al. Prevalence of bla CTX-M gene in multi-resistant Escherichia coli isolated from urinary tract infections, Tehran, Iran. Novelt Biomed 2014; 4: 107-113.
34.  Cicek AC, Saral A, Duzgen AO, Yasar E, Cizmeci Z, Balci PO, et al. Nationwide study of Escherichia coli producing extended-spectrum β-lactamases TEM, SHV and CTX-M in Turkey. J Antibiot  2013;66:647-650.
35. Canton R, Gonzalez- Alba JM, Galan JC. CTX M Enzymes: origin and diffusion. Front Microbiol 2012; 3: 110.
36. Naseer U, Sundsfjord A. The CTX- M conundrum: dissemination of plasmids and Escherichia coli clones. Microb Drug Resist 2011; 17: 83- 97.
37. Tumbarello M, Sanguinetti M, Montuori E, Trecarichi EM, Posteraro B, Fiori B, et al. Predictors of mortality in patients with bloodstream infections caused by extended-spectrum-β-lactamase-producing Enterobacteriaceae: importance of inadequate initial. Antimicrob Agents Chemother 2007; 51:3469.
38. Ruppé  E, Hem S, Lath S, Gautier V, Ariey F, Sarthou JL, Monchy D, et al. CTX-M β-Lactamases in Escherichia coli from Community-acquired Urinary Tract Infections, Cambodia. Emerg Infect Dis. 2009;15:741–748.
39. Manoharan A, Premalatha K, Chatterjee S, Mathai D, SARI Study Group. Correlation of TEM, SHV and CTX-M extended-spectrum beta lactamases among Enterobacteriaceae with their in vitro antimicrobial susceptibility. Indian J Med Microbiol 2011; 29:161-164.
40. Li LM, Wang MY, Yuan XY, Wang HJ, Li Q, Zhu YM. Characterization of integrons among Escherichia coli in a region at high incidence of ESBL-EC. Pak J Med Sci 2014;30:177–180.
41. Sung JY, Oh JE. Distribution and characterization of integrons in Enterobacteriaceae isolates from chickens in Korea. J Microbiol Biotechnol 2014;24:1008–1013.
42. Ho PL,Wong RC, Chow KH, Que TL. Distribution of integron-associated trimethoprim-sulfamethoxazole resistance determinants among Escherichia coli from humans and food-producing animals. Lett Appl Microbiol 2009; 49:627–634.
43. Grape M, Farra A, Kronvall G, Sundstro ML. Integrons and gene cassettes in clinical isolates of co-trimoxazole-resistant Gram-negative bacteria. Clin Microbiol Infect 2005;11:185–192.