Silencing of rhomboid domain containing 1 to inhibit the metastasis of human breast cancer cells in vitro

Document Type: Original Article

Authors

1 Thyroid Breast Surgery, Ningbo Medical Center Lihuili Eastern Hospital, Ningbo, 315000, China

2 Thyroid Breast Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, 315000, China

Abstract

Objective(s): A growing body of evidence indicates that rhomboid domain containing 1 (RHBDD1) plays an important role in a variety of physiological and pathological processes, including tumorigenesis. We aimed to determine the function of RHBDD1 in breast cancer cells.
Materials and Methods: In this study, we used the Oncomine™ database to determine the expression patterns of RHBDD1 in normal and breast cancer tissues. We performed lentiviral transfection of RHBDD1-specific small interfering RNA into the breast cancer cell lines ZR-75-30 and MDA-MB-231 in order to investigate the effects of RHBDD1 deficiency on breast cancer metastasis.
Results: We found that knockdown of RHBDD1 inhibited breast cancer cell migration and invasion in vitro. Moreover, knockdown of RHBDD1 promoted epithelial–mesenchymal transition (EMT) by suppressing the expression of MPP2, MPP9, fibronectin 1, vimentin, SRY-box 2, zinc finger E-box binding homeobox 1, and snail family transcriptional repressor 1, and promoting the expression of cadherin 1. Additionally, knockdown of RHBDD1 inhibited the protein expression and phosphorylation of Akt.
Conclusion: Our data indicate that RHBDD1 overexpression may promote breast cancer metastasis via the regulation of EMT, suggesting that RHBDD1 may be an important regulator of breast cancer metastasis.

Keywords

Main Subjects


1. Siegel RL, Miller KD, Jemal A. Cancer Statistics, 2017. CA Cancer J Clin 2017; 67:7-30.
2. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin 2015; 65:87-108.
3. Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, et al. Cancer statistics in China, 2015. CA Cancer J Clin 2016; 66:115-132.
4. Gupta GP, Massague J. Cancer metastasis: building a framework. Cell 2006; 127:679-695.
5. Steeg PS. Tumor metastasis: mechanistic insights and clinical challenges. Nat Med 2006; 12:895-904.
6. Urban S, Lee JR, Freeman M. Drosophila rhomboid-1 defines a family of putative intramembrane serine proteases. Cell 2001; 107:173-182.
7. Urban S. Rhomboid proteins: conserved membrane proteases with divergent biological functions. Genes Dev 2006; 20:3054-3068.
8. Etheridge SL, Brooke MA, Kelsell DP, Blaydon DC. Rhomboid proteins: a role in keratinocyte proliferation and cancer. Cell Tissue Res 2013; 351:301-307.
9. Wasserman JD, Urban S, Freeman M. A family of rhomboid-like genes: Drosophila rhomboid-1 and roughoid/rhomboid-3 cooperate to activate EGF receptor signaling. Genes Dev 2000; 14:1651-1663.
10. McQuibban GA, Saurya S, Freeman M. Mitochondrial membrane remodelling regulated by a conserved rhomboid protease. Nature 2003; 423:537-541.
11. Abba MC, Lacunza E, Nunez MI, Colussi A, Isla-Larrain M, Segal-Eiras A, et al. Rhomboid domain containing 2 (RHBDD2): a novel cancer-related gene over-expressed in breast cancer. Biochim Biophys Acta 2009; 1792:988-997.
12. Zou H, Thomas SM, Yan ZW, Grandis JR, Vogt A, Li LY. Human rhomboid family-1 gene RHBDF1 participates in GPCR-mediated transactivation of EGFR growth signals in head and neck squamous cancer cells. FASEB J 2009; 23:425-432.
13. Yan Z, Zou H, Tian F, Grandis JR, Mixson AJ, Lu PY, et al. Human rhomboid family-1 gene silencing causes apoptosis or autophagy to epithelial cancer cells and inhibits xenograft tumor growth. Mol Cancer Ther 2008; 7:1355-1364.
14. Lacunza E, Canzoneri R, Rabassa ME, Zwenger A, Segal-Eiras A, Croce MV, et al. RHBDD2: a 5-fluorouracil responsive gene overexpressed in the advanced stages of colorectal cancer. Tumour Biol 2012; 33:2393-2399.
15. Wang Y, Guan X, Fok KL, Li S, Zhang X, Miao S, et al. A novel member of the Rhomboid family, RHBDD1, regulates BIK-mediated apoptosis. Cell Mol Life Sci 2008; 65:3822-3829.
16. Wei X, Lv T, Chen D, Guan J. Lentiviral vector mediated delivery of RHBDD1 shRNA down regulated the proliferation of human glioblastoma cells. Technol Cancer Res Treat 2014; 13:87-93.
17. Song W, Liu W, Zhao H, Li S, Guan X, Ying J, et al. Rhomboid domain containing 1 promotes colorectal cancer growth through activation of the EGFR signalling pathway. Nat Commun 2015; 6:8022.
18. Liu XN, Tang ZH, Zhang Y, Pan QC, Chen XH, Yu YS, et al. Lentivirus-mediated silencing of rhomboid domain containing 1 suppresses tumor growth and induces apoptosis in hepatoma HepG2 cells. Asian Pac J Cancer Prev 2013; 14:5-9.
19. Lin YN, Gui FM, Shen H, Wang F, Cao Z, Li QH, et al. [Expression of RHBDD1 gene in patients with chronic myeloid leukemia and its clinical significance]. Zhongguo Shi Yan Xue Ye Xue Za Zhi 2013; 21:12-15.
20. Rhodes DR, Yu J, Shanker K, Deshpande N, Varambally R, Ghosh D, et al. ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia 2004; 6:1-6.
21. Han J, Bai J, Yang Y, Yin H, Gao W, Lu A, et al. Lentivirus-mediated knockdown of rhomboid domain containing 1 inhibits colorectal cancer cell growth. Mol Med Rep 2015; 12:377-381.
22. Ma XJ, Dahiya S, Richardson E, Erlander M, Sgroi DC. Gene expression profiling of the tumor microenvironment during breast cancer progression. Breast Cancer Res 2009; 11:R7.
23. Karnoub AE, Dash AB, Vo AP, Sullivan A, Brooks MW, Bell GW, et al. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 2007; 449:557-563.
24. Finak G, Bertos N, Pepin F, Sadekova S, Souleimanova M, Zhao H, et al. Stromal gene expression predicts clinical outcome in breast cancer. Nat Med 2008; 14:518-527.
25. Curtis C, Shah SP, Chin SF, Turashvili G, Rueda OM, Dunning MJ, et al. The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. Nature 2012; 486:346-352.
26. Ren X, Song W, Liu W, Guan X, Miao F, Miao S, et al. Rhomboid domain containing 1 inhibits cell apoptosis by upregulating AP-1 activity and its downstream target Bcl-3. FEBS Lett 2013; 587:1793-1798.
27. Kong D, Li Y, Wang Z, Sarkar FH. Cancer Stem Cells and Epithelial-to-Mesenchymal Transition (EMT)-Phenotypic Cells: Are They Cousins or Twins? Cancers (Basel) 2011; 3:716-729.
28. Ran J, Lin DL, Wu RF, Chen QH, Huang HP, Qiu NX, et al. ZEB1 promotes epithelial-mesenchymal transition in cervical cancer metastasis. Fertil Steril 2015; 103:1606-1614 e1601-1602.
29. Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol 2014; 15:178-196.
30. Puisieux A, Brabletz T, Caramel J. Oncogenic roles of EMT-inducing transcription factors. Nat Cell Biol 2014; 16:488-494.
31. Xu H, Xiao Q, Fan Y, Xiang T, Li C, Li C, et al. Epigenetic silencing of ADAMTS18 promotes cell migration and invasion of breast cancer through AKT and NF-kappaB signaling. Cancer Med 2017; 6:1399-1408.
32. Cui H, Yuan J, Du X, Wang M, Yue L, Liu J. Ethyl gallate suppresses proliferation and invasion in human breast cancer cells via Akt-NF-kappaB signaling. Oncol Rep 2015; 33:1284-1290.
33. Larue L, Bellacosa A. Epithelial-mesenchymal transition in development and cancer: role of phosphatidylinositol 3’ kinase/AKT pathways. Oncogene 2005; 24:7443-7454.
34. Julien S, Puig I, Caretti E, Bonaventure J, Nelles L, van Roy F, et al. Activation of NF-kappaB by Akt upregulates Snail expression and induces epithelium mesenchyme transition. Oncogene 2007; 26:7445-7456.
35. Sizemore N, Lerner N, Dombrowski N, Sakurai H, Stark GR. Distinct roles of the Ikappa B kinase alpha and beta subunits in liberating nuclear factor kappa B (NF-kappa B) from Ikappa B and in phosphorylating the p65 subunit of NF-kappa B. J Biol Chem 2002; 277:3863-3869.
36. Saegusa M, Hashimura M, Kuwata T, Okayasu I. Requirement of the Akt/beta-catenin pathway for uterine carcinosarcoma genesis, modulating E-cadherin expression through the transactivation of slug. Am J Pathol 2009; 174:2107-2115.