Involvement of central opiate receptors in modulation of centrally administered oxytocin-induced antinociception

Document Type: Original Article


1 Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran

2 Graduated, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran


Objective(s): Oxytocin is involved in modulation of many brain-mediated functions. In the present study, we investigated the central effects of oxytocin and its receptor antagonist, atosiban on inflammatory pain. The contribution of opiate receptors was explored using non-selective and selective antagonists. Materials and Methods: The fourth ventricle of the brain of anesthetized rats was implanted with a guide cannula. Inflammatory pain in the orofacial region was induced by subcutaneous (SC) injection of formalin into the vibrissa pad, and time duration of face rubbing behavior was measured for 45 min.
Results: A typical biphasic pain was observed after formalin injection. This biphasic pain behavior was attenuated by intra-fourth ventricle administration of oxytocin (12.5, 50, and 200 ng/rat). Central prior administration of 400 ng/rat atosiban (an oxytocin receptor antagonist), naloxone (a non-selective opiate receptor antagonist), naloxonazine (a selective µ-opiate receptor antagonist), and nor-binaltorphimine (a selective κ-opiate receptor antagonist), but not naltrindole (a δ-opiate receptor antagonist), prevented oxytocin-induced (200 ng/rat) antinociception.  Except for naltrindole, other antagonists increased pain intensity when used alone. Above-mentioned drugs did not alter locomotor activity.
Conclusion: Oxytocin, as a neuropeptide neurotransmitter, may be involved in the supraspinal modulation of inflammatory pain through µ- and κ-, but not δ-opiate receptors.


Main Subjects

1. Tom N, Assinder SJ. Oxytocin in health and disease. Int J Biochem Cell Biol 2010; 42:202-205.
2. Veening GJ, de JongTR, WaldingerMD, Korte SM, Olivier B. The role of oxytocin in male and female reproductive behavior. Eur J Pharmacol 2015; 753:209-228.
3. CollinsGT, EquibarJR. Neuropharmacology of yawning. Front Neurol Neurosci 2010; 28:90-106.
4. MacDonald K, Feifel D. Oxytocinʼs role in anxiety: a critical appraisal. Brain Res 2014; 1580:55-56.
5. Sarnyai Z, Kovacs GL. Oxytocin in learning and addiction: from early discoveries to the present. Pharmacol Biochem Behav 2014; 119:3-9.
6. Erfanparast A, Tamaddonfard E, Henareh-Chareh F. Intra-hippocampal microinjection of oxytocin produced antiepileptic effect on the pentylenetetrazol-induced epilepsy in rats. Pharmacol Rep 2017; 69:757-763.
7. Engle MP, Ness TJ,Robbins MT. Intrathecal oxytocin inhibits visceromotor reflex and spinal neuronal responses to noxious distention of the rat urinary bladder. Reg Anesth Pain Med 2012; 37:515-520.
8. Gonzalez-Hernandez A, Rajos-Piloni G,Condes-Lara M. Oxytocin and analgesia: future trends. Trends Pharmacol Sci 2014; 35:549-551.
9. Rash JA, Aguire-Camacho A, Campbell TS. Oxytocin and pain-a systematic review and synthesis of findings. Clin J Pain2014; 30:453-462.
10. Abbasnezhad A, Khazdir MR, Kianmehr M. The role of nitric oxide on the oxytocin induced analgesia in mice. Iran J Basic Med Sci 2016; 19:238-244.
11. Xin Q,Bai B, LiuW. The analgesic effects of oxytocin in the peripheral and central nervous system. Neurochem Int 2017; 103:57-64.
12. Mansour A, Fox CA, Burke S, Meng F, Thompson RC, Akil H, et al. Mu, delta, kappa opioid receptor mRNA expression in the rat CNS: an in situ hybridization study. J Comp Neurol 1994; 350:412-438.
13. Bodnar RJ. Endogenous opiates and behavior: 2015. Peptides 2016; 75:126-188.
14. Russo R, DʼAgostino G, MattaceRaso G, Avagliano C, Cristiano C, Meli R, et al. Central administration of oxytocin reduces hyperalgesia in mice: implication for cannabinoid and opioid systems. Peptides 2012; 38:81-88.
15. Sessle BJ. Peripheral and central mechanisms of orofacial inflammatory pain. Int Rev Neurobiol 2011; 97:179-206.
16. Zubrzycka M, Jakub F, Janecka A. Inhibition of trigemino-hypoglossal reflex in rats by oxytocin is mediated by µ and κ opioid receptors. Brain Res 2005; 1035:67-72.
17. Wang YL, Yuan Y, Yang J, Wang CH, Pan YJ, Lu L, et al. The interaction between the oxytocin and pain modulation in headache patients. Neuropeptides 2013; 47:93-97.
18. Nones CF, Reis RC, Jesus CH, Veronez DA, Cunha JM, Chichorro JG. Orofacial sensory changes after streptozotocin-induced diabetes in rats. Brain Res 2013; 1501:56-67.
19. Fried K, Bongenhielm U, Boissonade FM, Robinson PP. Nerve injury-induced pain in the trigeminal system. Neuroscientist 2001; 7:155-165.
20. Clavelou P, Pajot J, Dallel R, Raboisson P, Application of the formalin test to the study of orofacial pain in the rat. Neurosci lett 1989;103:349-353.
21. Duale C, Sierralta F, Dallel R. Analgesia induced by morphine microinjected into the nucleus raphe magnus: effect on tonic pain. Curr Drug Deliv 2007; 4:181-184.
22. Erfanparast A, Tamaddonfard E, Nemati S. Effects of intra-hippocampal microinjection of vitamin B12 on the orofacial pain and memory impairments induced by scopolamine and orofacial pain in rats. Physiol Behav 2017; 170:68-77.
23. Tamaddonfard E, Erfanparast A, Farshid AA, Khalilzadeh E. Interaction between histamine and morphine at the level of the hippocampus in the formalin-induced orofacial pain in rats. Pharmacol Rep 2011; 63:423-432.
24. Paxinos G, Watson C. The rat brain in stereotaxic coordinates. Compact 3rd ed, San Diego, USA: Academic Press; 1997.
25. Yang J, Yang Y, Chen JM, Liu WY, Wang CH, Lin BC. Central oxytocin enhances antinociception in the rat. Peptides 2007; 28:1113-1119.
26. Bourne S, Machada AG, Nagel SJ. Basic anatomy and physiology of pain pathways. Neurosurg Clin N Am 2014; 25:629-638.
27. Ossipov MH, Dussor GO, PorrecaF. Central modulation of pain. J Clin Invest 2010; 120:3779-3787.
28. Vanegas H, Schaible HG. Descending control of persistent pain: inhibitory or facilitatory. Brain Res Rev 2004; 46:295-309.
29. Donatti AF, Araujo RM, Soriano RN, Azevedo LU, Leite-Panissi CA, Branco LG. Role of hydrogen sulfide in the formalin-induced orofacial pain in rats. Eur J Pharmacol 2014; 738:49-31.
30. Dallel R, Raboisson P, Clavelou P, Saade M, Woda A. Evidence for a peripheral origin of the tonic nociceptive response to subcutaneous formalin. Pain 1995; 61:11-16.
31. Ahn DK, Lee KR, Lee HJ, Kim SK, Choi HS, Lim EJ, et al. Intracisternal administration of chemokines facilitated formalin-induced behavioral response in the orofacial area of freely moving rats. Brain Res Bull 2005; 66:50-58.
32. Yang GY, Woo YW, Park MK, Bae YC, Ahn DK, Bonfa E. Intracisternal administration of NR2 antagonists attenuates facial formalin-induced nociceptive behavior in rats. J Orofacl Pain 2010; 24:203-211.
33. Gimpl G, Fahrenholz F. The oxytocin receptor system: structure, function, and regulation. Physiol Rev 2001; 81:629-683.
34. Grinevich V, Knobloch-Bollmann HS, Eliava M, Chini B. Assembling the puzzle: pathways of oxytocin signaling in the brain. Biol Psychiatry 2016; 79:155-164.
35. Lee SK, Ryu PD, Lee SY. Differential distributions of neuropeptides in hypothalamic paraventricular nucleus neurons projecting to the rostral ventrolateral medulla in the rat. Neurosci Lett 2013; 556:160-165.
36. Manning M, Misicka A, Olma A, Bankowski K, Stoev S, Chini B, et al. Oxytocin and vasopressin agonists and antagonists as research tools and potential therapeutics. J Neuroendocrinol 2012; 24:609-628.
37. Yang J, Pan YJ, Zhao Y, Qiu PY, Lu L, Li P, et al. Oxytocin in the rat caudate nucleus influences pain modulation. Peptides 2011;32: 2104-2107.
38. Yang J, Li P, Liang JY, Pan YJ, Yan XQ, Yan FL, et al. Oxytocin in the periaqueductal grey regulates nociception in the rat.Regul Pept 2011; 169:39-42.
39. Zhang Y, Yang Y, Dai R, Wu H, Li C, Guo Q. Oxytocin in the paraventricular nucleus attenuates incision-induced mechanical allodynia. Exp Ther Med 2015; 9:1351-1356.
40. Russo R, D’Agostino G, Mattace Raso G, Avagliano C, Cristiano C, Meli R, et al. Central administration of oxytocin reduces hyperalgesia in mice: implication for cannabinoid and opioid systems. Peptides 2012; 38:81-88.
41. Zubrzycka M1, Szemraj J, Janecka A. Effect of tooth pulp and periaqueductal central gray stimulation on the expression of genes encoding the selected neuropeptides and opioid receptors in the mesencephalon, hypothalamus and thalamus in rats. Brain Res 2011; 1382:19-28.
42. Macedo CG, Fanton LE, Fischer L, Tambeli CH. Coactivation of μ- and κ-opioid receptors may mediate the protective effect of testosterone on the development of temporomandibular joint nociception in male rats. J Oral Facial Pain Headache 2016; 30:61-67.
43. Araújo IW, Chaves HV, Pachêco JM, Val DR, Vieira LV, Santos R, et al. Role of central opioid on the antinociceptive effect of sulfated polysaccharide from the red seaweed Solieria filiformis in induced temporomandibular joint pain. Int Immunopharmacol 2017; 44:160-167.
44. Helm S, Trescot AM, Colson J, Sehgal N, Silverman S. Opioid antagonists, partial agonists, and agonists/antagonists: the role of office-based detoxification. Pain Physician 2008; 11: 225-235.
45. Trescot AM, Datta S, Lee M, Hansen H. Opioid pharmacology. Pain Physician 2008;11:133-153.
46. Gao L,Yu LC. Involvement of opioid receptors in the oxytocin-induced antinociception in the central nervous system of rats. Regul Pept 2004; 120:53-58.
47. Yang J, Liang JY, Li P, Pan YJ, Qiu PY, Zhang J, et al. Oxytocin in the periaqueductal gray participates in pain modulation in the rat by influencing endogenous opiate peptides. Peptides 2011; 32:1255-1261.
48. Peterson M, Eklund M, Uvnas-Moberg K. Oxytocin decreases corticosterone and nociception and increases motor activity in OVX rats. Maturitas 2005; 51:426-433.