Ultra structural characteristics of methicillin resistant Staphylococcus aureus cell wall after affecting with lytic bacteriophages using atomic force microscopy

Document Type: Original Article


1 Pediatric Infectious Diseases Research Center, Mazandaran University of Medical Sciences, Sari, Iran

2 Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran

3 Nanomedicine Group, Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran


Objective(s): During the last years with increasing resistant bacteria to the most antibiotics bacteriophages are suggested as appropriate treatment option. To investigate lytic activity of bacteriophages there are indirect microbial procedures and direct methods. The present study to complement microbial procedures and investigate ultra-structural characteristics of infection bacterium-phage use atomic force microscopy technique.
Materials and Methods: The Siphoviridae bacteriophages were isolated from sewage at the Tertiary Pediatric Hospital. Bacteriophages (10×108 PFU/ml) were diluted and were mixed with 100 μl of methicillin resistant Staphylococcus aureus (MRSA) ATCC 33591 (1.5×108 CFU/ml). The tubes were incubated for 20 min at 37 °C, at intervals 10 min, 10 μl samples were removed and directly were investigated MRSA ATCC morphology, roughness parameter, 3D topography, cell height, and fast Fourier transform (FFT) by atomic force microscopy (AFM) technique. Concurrently turbidity assay were performed.
Results: Concentration of MRSA ATCC No. 33591 strain after 10 min in phage-treated MRSA S3 (1.5×106 CFU/ml), S4 (1.5×105 CFU/ml), S5 (1.5×104 CFU/ml), S6 (1.5×103 CFU/ml) decreased 2-log, 3-log, 4-log, and 5-log respectively. The results AFM micrographs shown the most changes in bacterial morphology and 3D topography, destruction of cell wall, decrease of cell height, and loss of their shape after 10 min at phage-treated MRSA S3 (1.5×106 CFU/ml), S4 (1.5×105 CFU/ml), S5 (1.5×104 CFU/ml), S6 (1.5×103 CFU/ml) respectively .
Conclusion: In this study MRSA ATCC ultra-structural changes in phage-treated MRSA ATCC groups directly were detected using AFM technique.


Main Subjects

1. Huang SS, Platt R. Risk of methicillin-resistant Staphylococcus aureus infection after previous infection or colonization. Clin Infect Dis 2003;36:281-285.
2. Lentino J, Baddour L, Wray M, Wong E, Yu V. Staphylococcus aureus and other bacteremias in hemodialyis patients: Antibiotic therapy and surgical removal of access site. Infection 2000;28:355-360.
3. Lowy FD. Antimicrobial resistance: the example of Staphylococcus aureus. J Clin Invest 2003;111:1265-1273.
4. Rezai MS, Pourmousa R, Dadashzadeh R, Ahangarkani F. Multidrug resistance pattern of bacterial agents isolated from patient with chronic sinusitis. Caspian J Intern Med 2016;7:114.
5. Inal JM. Phage therapy: a reappraisal of bacteriophages as antibiotics. Arch Immunol Ther Exp 2003;51:237-244.
6. Park SC, Shimamura I, Fukunaga M, Mori K-I, Nakai T. Isolation of bacteriophages specific to a fish pathogen, Pseudomonas plecoglossicida, as a candidate for disease control. Appl Environ Microbiol  2000;66:1416-1422.
7. Barrow PA, Soothill JS. Bacteriophage therapy and prophylaxis: rediscovery and renewed assessment of potential. Trends Microbiol 1997;5:268-271.
8. Garcia-Doval C, Castón JR, Luque D, Granell M, Otero JM, Llamas-Saiz AL, et al. Structure of the receptor-binding carboxy-terminal domain of the bacteriophage T5 L-shaped tail fibre with and without its intra-molecular chaperone. Viruses 2015;7:6424-6240.
9. Miller ES, Kutter E, Mosig G, Arisaka F, Kunisawa T, Rüger W. Bacteriophage T4 genome. Microbiol Mol Biol Rev 2003; 67:86-156.
10. Simon LD, Randolph B. Bacteriophage T4 bypass31 mutations that make gene 31 nonessential for bacteriophage T4 replication: isolation and characterization. J Virol 1984;51:321-328.
11. Synnott AJ, Kuang Y, Kurimoto M, Yamamichi K, Iwano H, Tanji Y. Isolation from sewage influent and characterization of novel Staphylococcus aureus bacteriophages with wide host ranges and potent lytic capabilities. Appl Environ Microbiol  2009;75:4483-4490.
12. Awais R, Fukudomi H, Miyanaga K, Unno H, Tanji Y. A recombinant bacteriophage‐based assay for the discriminative detection of culturable and viable but nonculturable Escherichia coli O157: H7. Biotechnol Prog  2006;22:853-859.
13. Dupres V, Verbelen C, Dufrêne YF. Probing molecular recognition sites on biosurfaces using AFM. Biomaterials  2007;28:2393-2402.
14. Ackermann H-W, Ackermann H-W. The first phage electron micrographs. Bacteriophage  2011;1:225-227.
15. Fotiadis D, Scheuring S, Müller SA, Engel A, Müller DJ. Imaging and manipulation of biological structures with the AFM. Micron  2002;33:385-397.
16. Dufrene Y. Application of atomic force microscopy to microbial surfaces: from reconstituted cell surface layers to living cells. Micron  2001;32:153-165.
17. Meyer RL, Zhou X, Tang L, Arpanaei A, Kingshott P, Besenbacher F. Immobilisation of living bacteria for AFM imaging under physiological conditions. Ultramicroscopy  2010;110:1349-1357.
18. Bolshakova AV, Kiselyova OI, Yaminsky IV. Microbial surfaces investigated using atomic force microscopy. Biotechnol Prog 2004;20:1615-1622.
19. Brown DF, Edwards DI, Hawkey PM, Morrison D, Ridgway GL, Towner KJ, et al. Guidelines for the laboratory diagnosis and susceptibility testing of methicillin-resistant Staphylococcus aureus (MRSA). J Antimicrob Chemother  2005;56:1000-1018.
20. Abdulamir AS, Jassim SA, Hafidh RR, Bakar FA. The potential of bacteriophage cocktail in eliminating Methicillin-resistant Staphylococcus aureus biofilms in terms of different extracellular matrices expressed by PIA, ciaA-D and FnBPA genes. Ann Clin Microbiol Antimicrob 2015;14:49.
21. Jandt KD. Atomic force microscopy of biomaterials surfaces and interfaces. Surf SCI 2001;491:303-32.
22. Rahimzadeh G, Gill P, Rezai MS. Characterization and lytic activity of methicillin-resistant Staphylococcus aureus (MRSA) phages isolated from NICU. Australasian Med J  2016;9:169-175.
23. Rahimzadeh G, Gill P, Rezai MS. Characterization of methicillin-resistant Staphylococcus aureus (MRSA) phages from sewage at a tertiary pediatric hospital. Arch Pediatr Infect Dis 2017; 5:e39615.
24. Rafati A, Gill P. Ultrastructural characterizations of DNA nanotubes using scanning tunneling and atomic force microscopes. J Microsc Ultrastruct  2016;4:1-5.
25. Dubrovin EV, Voloshin AG, Kraevsky SV, Ignatyuk TE, Abramchuk SS, Yaminsky IV, et al. Atomic force microscopy investigation of phage infection of bacteria. Langmuir  2008;24:13068-13074.
26. Schmelcher M, Donovan DM, Loessner MJ. Bacteriophage endolysins as novel antimicrobials. Future Microbiol  2012;7:1147-1171.
27. Dubrovin EV, Fedyukina GN, Kraevsky SV, Ignatyuk TE, Yaminsky IV, Ignatov SG. AFM specific identification of bacterial cell fragments on biofunctional surfaces. Open Microbiol J 2012;6:22.
28. Cao B, Xu H, Mao C. Transmission electron microscopy as a tool to image bioinorganic nanohybrids: The case of phage‐gold nanocomposites.  Microsc Res Tech  2011;74:627-635.
29. Kourkoutis LF, Plitzko JM, Baumeister W. Electron microscopy of biological materials at the nanometer scale. Annu Rev  Mater  Res  2012;42:33-58.