Abnormal hippocampal miR-1b expression is ameliorated by regular treadmill exercise in the sleep-deprived female rats

Document Type: Original Article

Authors

1 Department of Biology, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran

2 Laboratory of Molecular Neuroscience, Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Science, Kerman, Iran

3 Department of Biology, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, Iran

Abstract

Objective(s): The protective effect of regular running on sleep deprivation (SD)-induced cognitive impairment has been revealed. In this study, we focused on the effects of regular exercise, sleep deprivation and both of them together on the microRNA-1b (miR-1b) expression and their relation to the behavioral parameters and brain-derived neurotrophic factor (BDNF) expression.
Materials and Methods: We used ovariectomized (OVX) female rats. The exercise program was mild-moderate treadmill training for 4 weeks. 72 hr SD was achieved using the multiple platform method and the spatial learning and memory parameters have been evaluated by the Morris water maze (MWM) test. The levels of studied genes were quantified by real-time PCR.
Results: SD down-regulated pri-miR-1b, miR-1b (P˂0.05), and BDNF mRNA (P˂0.01) in the hippocampus. Furthermore, female rats under exercise conditions showed significant up-regulation of the miR-1b and BDNF mRNA (P˂0.001). In addition, miR-1b positively correlated with cognitive function (P˂0.05) and BDNF mRNA (P˂0.01).
Conclusion: Our data demonstrated that regular treadmill exercise could reverse the down-regulation of hippocampal miR-1b, which has a probable role in the SD-induced cognitive impairment.

Keywords

Main Subjects


1. Williams P, Lord SR. Effects of group exercise on cognitive functioning and mood in older women. Aust N Z J Public Health. 1997;21:45-52.
2. Young R. The effect of regular exercise on cognitive functioning and personality. Br J Sports Med. 1979;13:110-117.
3. Laurin D, Verreault R, Lindsay J, MacPherson K, Rockwood K. Physical activity and risk of cognitive impairment and dementia in elderly persons. Arch Neurol. 2001;58:498-504.
4. Tong L, Shen H, Perreau VM, Balazs R, Cotman CW. Effects of exercise on gene-expression profile in the rat hippocampus. Neurobiol Dis. 2001;8:1046-1056.
5. Saadati H, Esmaeili-Mahani S, Esmaeilpour K, Nazeri M, Mazhari S, Sheibani V. Exercise improves learning and memory impairments in sleep deprived female rats. Physiol Behav. 2015;138:285-291.
6. Zagaar M, Alhaider I, Dao A, Levine A, Alkarawi A, Alzubaidy M, et al. The beneficial effects of regular exercise on cognition in REM sleep deprivation: behavioral, electrophysiological and molecular evidence. Neurobiol Dis. 2012;45:1153-1162.
7. Saadati H, Sheibani V, Esmaeili-Mahani S, Darvishzadeh-Mahani F, Mazhari S. Prior regular exercise reverses the decreased effects of sleep deprivation on brain-derived neurotrophic factor levels in the hippocampus of ovariectomized female rats. Regul Pept. 2014;194:11-15.
8. Ntanasis-Stathopoulos J, Tzanninis J, Philippou A, Koutsilieris M. Epigenetic regulation on gene expression induced by physical exercise. J Musculoskelet Neuronal Interact. 2013;13:133-146.
9. Diekelmann S, Born J. The memory function of sleep. Nat Rev Neurosci. 2010;11:114-126.
10.    Maquet P. The role of sleep in learning and memory. Sci. 2001;294:1048-1052.
11.    Fernandes-Santos L, Patti CL, Zanin KA, Fernandes HA, Tufik S, Andersen ML, et al. Sleep deprivation impairs emotional memory retrieval in mice: influence of sex. Prog Neuropsychopharmacol Biol Psychiatry. 2012;38:216-222.
12.    Hagewoud R, Havekes R, Novati A, Keijser JN, Van Der Zee EA, Meerlo P. Sleep deprivation impairs spatial working memory and reduces hippocampal AMPA receptor phosphorylation. J Sleep Res. 2010;19:280-288.
13.    Tartar JL, Ward CP, McKenna JT, Thakkar M, Arrigoni E, McCarley RW, et al. Hippocampal synaptic plasticity and spatial learning are impaired in a rat model of sleep fragmentation. Eur J Neurosci. 2006;23:2739-2748.
14.    Guan Z, Peng X, Fang J. Sleep deprivation impairs spatial memory and decreases extracellular signal-regulated kinase phosphorylation in the hippocampus. Brain Res. 2004;1018:38-47.
15.    Vecsey CG, Baillie GS, Jaganath D, Havekes R, Daniels A, Wimmer M, et al. Sleep deprivation impairs cAMP signalling in the hippocampus. Nat. 2009;461:1122-1125.
16.    Prince T-M, Abel T. The impact of sleep loss on hippocampal function. Learn Mem. 2013;20:558-569.
17.    Davis CJ, Bohnet SG, Meyerson JM, Krueger JM. Sleep loss changes microRNA levels in the brain: a possible mechanism for state-dependent translational regulation. Neurosci Lett. 2007;422:68-73.
18.    Shruti K, Shrey K, Vibha R. Micro RNAs: tiny sequences with enormous potential. Biochem Biophys Res Commun. 2011;407:445-449.
19.    Filipowicz W, Bhattacharyya SN, Sonenberg N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet. 2008;9:102-114.
20.    Schratt G. Fine-tuning neural gene expression with microRNAs. Curr Opin Neurobiol. 2009;19:213-229.
21.    Kosik KS. The neuronal microRNA system. Nat Rev Neurosci. 2006;7:911-920.
22.    Kim J, Inoue K, Ishii J, Vanti WB, Voronov SV, Murchison E, et al. A MicroRNA feedback circuit in midbrain dopamine neurons. Sci. 2007;317:1220-1224.
23.    Schaefer A, O’Carroll D, Tan CL, Hillman D, Sugimori M, Llinas R, et al. Cerebellar neurodegeneration in the absence of microRNAs. J Exp Med. 2007;204:1553-1558.
24.    Davis TH, Cuellar TL, Koch SM, Barker AJ, Harfe BD, McManus MT, et al. Conditional loss of Dicer disrupts cellular and tissue morphogenesis in the cortex and hippocampus. J Neurosci. 2008;28:4322-4330.
25.    Konopka W, Kiryk A, Novak M, Herwerth M, Parkitna JR, Wawrzyniak M, et al. MicroRNA loss enhances learning and memory in mice. J Neurosci. 2010;30:14835-14842.
26.    Cuellar TL, Davis TH, Nelson PT, Loeb GB, Harfe BD, Ullian E, et al. Dicer loss in striatal neurons produces behavioral and neuroanatomical phenotypes in the absence of neurodegeneration. Proc Natl Acad Sci. 2008;105:5614-5629.
27.    Nagahara AH, Merrill DA, Coppola G, Tsukada S, Schroeder BE, Shaked GM, et al. Neuroprotective effects of brain-derived neurotrophic factor in rodent and primate models of Alzheimer’s disease. Nat Med. 2009;15:331-337.
28.    Varendi K, Kumar A, Härma M-A, Andressoo J-O. miR-1, miR-10b, miR-155, and miR-191 are novel regulators of BDNF. Cell Mol Life Sci. 2014;71:4443-4456.
29.    Yi S, Yuan Y, Chen Q, Wang X, Gong L, Liu J, et al. Regulation of Schwann cell proliferation and migration by miR-1 targeting brain-derived neurotrophic factor after peripheral nerve injury.sci rep. 2016;6:29121.
30.    Kirby TJ, McCarthy JJ. MicroRNAs in skeletal muscle biology and exercise adaptation. Free Radic Biol Med. 2013;64:95-105.
31.    Ben J, Soares FM, Scherer EB, Cechetti F, Netto CA, Wyse AT. Running exercise effects on spatial and avoidance tasks in ovariectomized rats. Neurobiol Learn Mem. 2010;94:312-327.
32.    Hajali V, Sheibani V, Esmaeili-Mahani S, Shabani M. Female rats are more susceptible to the deleterious effects of paradoxical sleep deprivation on cognitive performance. Behav Brain Res. 2012;228:311-328.
33.    Wei C, Henderson H, Spradley C, Li L, Kim I-K, Kumar S, et al. Circulating miRNAs as potential marker for pulmonary hypertension. PloS One. 2013;8:e64396.
34.    Fan JB. Next-generation MicroRNA expression profiling technology: methods and protocols. 1st ed. Springer; 2012.
35.    Mollaei H, Safaralizadeh R, Babaei E, Abedini MR, Hoshyar R. The anti-proliferative and apoptotic effects of crocin on chemosensitive and chemoresistant cervical cancer cells. Biomed Pharmacother. 2017;94:307-316.
36.    Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W, Tuschl T. Identification of tissue-specific microRNAs from mouse. Curr Biol. 2002;12:735-739.
37.    Chen X, Liang H, Zhang J, Zen K, Zhang C-Y. Horizontal transfer of microRNAs: molecular mechanisms and clinical applications. Protein Cell. 2012;3:28-37.
38.    Aryani A, Denecke B. Exosomes as a nanodelivery system: a key to the future of neuromedicine? Mol Neurobiol. 2016;53:818-834.
39.    Ma J-C, Duan M-J, Sun L-L, Yan M-L, Liu T, Wang Q, et al. Cardiac over-expression of microRNA-1 induces impairment of cognition in mice. Neurosci. 2015;299:66-78.
40.    Matos G, Scorza FA, Mazzotti DR, Guindalini C, Cavalheiro EA, Tufik S, et al. The effects of sleep deprivation on microRNA expression in rats submitted to pilocarpine-induced status epilepticus. Prog Neuropsychopharmacol Biol Psychiatry. 2014;51:159-165.
41.    Safdar A, Abadi A, Akhtar M, Hettinga BP, Tarnopolsky MA. miRNA in the regulation of skeletal muscle adaptation to acute endurance exercise in C57Bl/6J male mice. PloS One. 2009;4:e5610.
42.    Nielsen S, Scheele C, Yfanti C, Åkerström T, Nielsen AR, Pedersen BK, et al. Muscle specific microRNAs are regulated by endurance exercise in human skeletal muscle. J Physiol. 2010;588:4029-4037.
43.    Neumann E, Brandenburger T, Santana-Varela S, Deenen R, Köhrer K, Bauer I, et al. MicroRNA-1-associated effects of neuron-specific brain-derived neurotrophic factor gene deletion in dorsal root ganglia. Mol Cell Neurosci. 2016;75:36-43.