Effects of silibinin on hepatic warm ischemia-reperfusion injury in the rat model

Document Type: Original Article

Authors

1 Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran

2 Department of Laboratory Medicine, Faculty of Allied Medical Sciences, Mazandaran University of Medical Sciences, Sari, Iran

3 Department of Biochemistry, Biophysics and Genetics, Cellular and molecular biology research center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran

Abstract

Objective(s): Liver ischemia-reperfusion injuries (I/RI) are typically the main causes of liver dysfunction after various types of liver surgery especially liver transplantation. Radical components are the major causes of such direct injuries. We aimed to determine the beneficial effects of silibinin, a potent radical scavenger on liver I/RI.
Materials and Methods: Thirty-two rats were divided into 4 groups. Group I: VEHICLE, the rats underwent laparotomy and received DMSO, group II: SILI, laparotomy was done and silibinin was administered. Group III: I/R, the rats received DMSO and were subjected to a liver I/R procedure and group IV: I/R+SILI, the animals underwent the I/R procedure and received silibinin. After 1 hr of ischemia followed by 3 hr reperfusion, blood was collected to evaluate the serum marker of liver injuries. Hepatic tissue was harvested to investigate glycogen content, histological changes, and vasoregulatory gene expression.
Results: Results showed that serum AST, ALT, LDH, GGT, ALP, and hyaluronic acid (HA) increased significantly in I/R group compared with the VEHICLE group. Silibinin reduced this elevation except for GGT. Silibinin inhibited hepatocyte vacuolization and degeneration, endothelium damages, sinusoidal congestion and inflammation, and glycogen depletion during I/R. ET-1 mRNA was overproduced in the I/R group compared with the VEHICLE group which was decreased by silibinin. KLF2 and eNOS expression was reduced during I/R compared with the VEHICLE group. Silibinin elevated KLF2 expression but had no meaningful effect on eNOS expression.
Conclusion: Silibinin protected the liver from I/RI. Silibinin could improve liver circulation by preventing sinusoidal congestion, inflammation, and perhaps modification of the vasoregulatory gene expression.

Keywords

Main Subjects


1. MorenoGonzález E, García G, Ía I, Sanz RG, González‐Pinto I, Segurola CL, et al. Liver transplantation in patients with thrombosis of the portal, splenic or superior mesenteric vein. Br J Surg. 1993;80:81-85.
2. Montalvo-Jave EE, Escalante-Tattersfield T, Ortega-Salgado JA, Piña E, Geller DA. Factors in the pathophysiology of the liver ischemia-reperfusion injury. J Surg Res. 2008;147:153-159.
3. Akbari Kordkheyli V, Zarpou S, Khonakdar Tarsi A. Effects of dexamethasone on hepatic ischemia-reperfusion injuries. JMUMS 2017;27:196-209.
4.    Amani H, Habibey R, Hajmiresmail S, Latifi S, Pazoki-Toroudi H, Akhavan O. Antioxidant nanomaterials in advanced diagnoses and treatments of ischemia-reperfusion injuries. J Mater Chem B. 2017;5:9452-9476.
5.    Sonin NV, Garcia-Pagan J-C, Nakanishi K, Zhang JX, Clemens MG. Patterns of vasoregulatory gene expression in the liver response to ischemia/reperfusion and endotoxemia. Shock. 1999;11:175-179.
6.    Lin Z, Kumar A, SenBanerjee S, Staniszewski K, Parmar K, Vaughan DE, et al. Kruppel-like factor 2 (KLF2) regulates endothelial thrombotic function. Circ Res. 2005;96:e48-e57.
7.    Moseley R, Leaver M, Walker M, Waddington R, Parsons D, Chen W, et al. Comparison of the antioxidant properties of HYAFF®-11p75, AQUACEL® and hyaluronan towards reactive oxygen species in vitro. Biomaterials. 2002;23:2255-2264.
8.    Ferrari R. Oxygen-free radicals at myocardial level: effects of ischemia and reperfusion. Free radicals in diagnostic medicine: Adv Exp Med Biol 1994;366:99-111.
9.    Saller R, Melzer J, Reichling J, Brignoli R, Meier R. An updated systematic review of the pharmacology of silymarin. Forsch Komplementmed. 2007;14:70-80.
10.    Karimi G, Vahabzadeh M, Lari P, Rashedinia M, Moshiri M. “Silymarin”, a promising pharmacological agent for treatment of diseases. Iran J Basic Med Sci 2011;14:308-317.
11.    Beckmann‐Knopp S, Rietbrock S, Weyhenmeyer R, Böcker RH, Beckurts KT, Lang W, et al. Inhibitory effects of silibinin on cytochrome P‐450 enzymes in human liver microsomes. Pharmacol Toxicol 2000;86:250-256.
12.    Koçarslan A, Koçarslan S, Aydin MS, Gunay Ş, Karahan MA, Taşkın A, et al. Intraperitoneal administration of silymarin protects end organs from multivisceral ischemia/reperfusion injury in a rat model. Braz J Cardiovasc Surg 2016;31:434-439.
13.    Clavien P-A, Selzner M, Rüdiger HA, Graf R, Kadry Z, Rousson V, et al. A prospective randomized study in 100 consecutive patients undergoing major liver resection with versus without ischemic preconditioning. Ann Surg 2003;238:843-850.
14.    Mikaeili S, Kadkhodaee M, Golab F, Zahmatkesh M, Mahdavi-Mazdeh M, Seifi B, et al. Effects of liver ischemia-reperfusion on renal functional and oxidative stress indices. Physiol Pharmacol 2009;13:254-262.
15.    Massip‐Salcedo M, Roselló‐Catafau J, Prieto J, Avila MA, Peralta C. The response of the hepatocyte to ischemia. Liver Int. 2007;27:6-16.
16.    Pannen BH, Al‐Adili F, Bauer M, Clemens MG, Geiger KK. Role of endothelins and nitric oxide in hepatic reperfusion injury in the rat. Hepatology 1998;27:755-764.
17.    Hassan‐Khabbar S, Cottart CH, Wendum D, Vibert F, Clot JP, Savouret JF, et al. Postischemic treatment by trans‐resveratrol in rat liver ischemia‐reperfusion: a possible strategy in liver surgery. Liver Transpl 2008;14:451-459.
18.    Ahmadiasl N, Banaei S, Alihemmati A. Combination antioxidant effect of erythropoietin and melatonin on renal ischemia-reperfusion injury in rats. Iran J Basic Medi Sci 2013;16:1209-1216.
19.    He Q, Kim J, Sharma RP. Silymarin protects against liver damage in BALB/c mice exposed to fumonisin B1 despite increasing accumulation of free sphingoid bases. Toxicol Sci 2004;80:335-342.
20.    Razavi BM, Karimi G. Protective effect of silymarin against chemical-induced cardiotoxicity. Iran J  Basic Med Sci 2016;19:916-923.
21.    Akbari Kordkheyli V, Nabipur E, Tafazoli A. An overview on the effects of silibinin on different microRNAs expression in cancer. JMUMS 2018;28:213-229.
22.    Dulk AC, Sebib Korkmaz K, Rooij BJF, Sutton ME, Braat AE, Inderson A, et al. High peak alanine aminotransferase determines extra risk for nonanastomotic biliary strictures after liver transplantation with donation after circulatory death. Transpl Int 2015;28:492-501.
23.    Perry BC, Soltys D, Toledo AH, Toledo-Pereyra LH. Tumor necrosis factor-α in liver ischemia/reperfusion injury. J Invest Surg 2011;24:178-188.
24.    Luper S. A review of plants used in the treatment of liver disease: part 1. Alternative medicine review: Clin Ther 1998;3:410-421.
25.    Park S-W, Choi S-M, Lee S-M. Effect of melatonin on altered expression of vasoregulatory genes during hepatic ischemia/reperfusion. Arch Pharm Res 2007;30:1619-1624.
26.    Serracino-Inglott F, Habib NA, Mathie RT. Hepatic ischemia-reperfusion injury. Am J Surg 2001;181:160-166.
27.    Jin M, Zhu Y, Zhang S, Ishizaki N, Tanaka H, Subbotin V, et al., editors. Attenuation of ischemic liver injury by a non-selective endothelin receptor antagonist. Transplant Proc 1997;29:1335.
28.    Russo L, Gracia‐Sancho J, García‐Calderó H, Marrone G, García‐Pagán JC, García‐Cardeña G, et al. Addition of simvastatin to cold storage solution prevents endothelial dysfunction in explanted rat livers. Hepatology 2012;55:921-930.
29.    Peralta C, Rull R, Rimola A, Deulofeu R, Roselló-Catafau J, Gelpí E, et al. Endogenous nitric oxide and exogenous nitric oxide supplementation in hepatic ischemia-reperfusion injury in the rat 1. Transplantation 2001;71:529-536.
30.    Sathanoori R, Rosi F, Gu B, Wiley J, Müller C, Olde B, et al. Shear stress modulates endothelial KLF2 through activation of P2X4. Purinergic Signal 2015;11:139-153.
31.    Gracia-Sancho J, Villarreal Jr G, Zhang Y, Yu JX, Liu Y, Tullius SG, et al. Flow cessation triggers endothelial dysfunction during organ cold storage conditions: strategies for pharmacologic intervention. Transplantation 2010;90:142-149.
32.    Kumar A, Lin Z, SenBanerjee S, Jain MK. Tumor necrosis factor alpha-mediated reduction of KLF2 is due to inhibition of MEF2 by NF-κB and histone deacetylases. Mol Cell Biol 2005;25:5893-5903.
33.    Marrone G, Russo L, Rosado E, Hide D, García-Cardeña G, García-Pagán JC, et al. The transcription factor KLF2 mediates hepatic endothelial protection and paracrine endothelial–stellate cell deactivation induced by statins. J Hepatol 2013;58:98-103.
34.    Gracia-Sancho J, Villarreal G, Zhang Y, García-Cardeña G. Activation of SIRT1 by resveratrol induces KLF2 expression conferring an endothelial vasoprotective phenotype. Cardiovasc Res 2010;85:514-519.
35.    Nabipour E, Akbari Kordkheyli V, Azizi S, Khonakdar-Tarsi A. Effects of silibinin on nitric oxide synthase genes expression during hepatic warm ischemia-reperfusion in adult male rats. JMUMS 2018;28:1-12.
36.    Constantinescu AA, Vink H, Spaan JA. Endothelial cell glycocalyx modulates immobilization of leukocytes at the endothelial surface. Arterioscler Thromb Vasc Biol 2003;23:1541-1547.
37.    Fraser J, Laurent T, Engström‐Laurent A, Laurent U. Elimination of hyaluronic acid from the bloodstream in the human. Clin Exp Pharmacol Physiol 1984;11:17-25.
38.    Gressner OA, Weiskirchen R, Gressner AM. Biomarkers of liver fibrosis: clinical translation of molecular pathogenesis or based on liver-dependent malfunction tests. Clin Chim Acta 2007;381:107-113.
39.    Rubio-Gayosso I, Platts SH, Duling BR. Reactive oxygen species mediate modification of glycocalyx during ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 2006;290: H2247-H2256.
40.    Henry CB, Duling BR. Permeation of the luminal capillary glycocalyx is determined by hyaluronan. Am J Physiol Heart Circ Physiol 1999;277: H508-H514.