Diet therapy for the treatment of Alzheimer’s disease in view of traditional Persian medicine: A review

Document Type: Review Article

Authors

1 Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran

2 Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran

3 Department of Traditional Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran

Abstract

Alzheimer’s disease (AD) is a neurodegenerative disease and the leading cause of dementia worldwide. Epidemiological studies support the important role of diet in prevention and improvement of AD. In Traditional Persian Medicine (TPM), there is multiple dietary guidelines to prevent and alleviate dementia and memory impairment. Pharmacological studies have been shown that most of the TPM-recommended dietary items can improve memory and cognitive decline and possess anti-amyloidogenic, etc. activities. Among them, garlic (Allium sativum) and its compounds, S-allyl-cysteine and diallyl-disulfide, coconut (Cocos nucifera) oil, saffron (Crocus sativus) and crocin and crocetin, honey, fish, lemon balm (Melissa officinalis) and its major compounds rosmarinic acid, raisin and resveratrol, rose flowers (Rosa damascna) and geraniol, ginger (Zingiber officinale) and its 6‐gingerol and 6-shogaol, cumin (Cuminum cyminum) and its main component cuminaldehyde have been found to possess stronger anti-AD activities. Most of these items exhibited antioxidant and AChE inhibitory activities and decreased lipid peroxidation. They also possessed anti-amyloidogenic effects, reduced cerebral plaques and Aβ-species, suppressed cerebral inflammation and alterations in tau protein and inhibited Aβ-induced apoptosis through various mechanisms. Noticeably, there are similarities between TPM anti-AD diet and the typical Mediterranean diet whose beneficial effects on AD have been widely demonstrated. Given the importance of traditional medicine systems in discovering new medicines and nutraceuticals for curing ailments, considering TPM anti-AD dietary recommendations in future research would be helpful.

Keywords

Main Subjects


1. Alzheimer’s A. 2015 Alzheimer’s disease facts and figures. Alzheimers dement 2015; 11:332.
2. Goshadrou F, Arefi Oskouie A, Eslami M, Nobakht Mothlagh Ghoochani BF. Effect of ghrelin on serum metabolites in Alzheimer’s disease model rats; a metabolomics studies based on 1H-NMR technique. Iran J Basic Med Sci 2018; 21:1245-1254.
3. Dá Mesquita S, Ferreira AC, Sousa JC, Correia-Neves M, Sousa N, Marques F. Insights on the pathophysiology of Alzheimer’s disease: the crosstalk between amyloid pathology, neuroinflammation and the peripheral immune system. Neurosci Biobehav Rev 2016; 68:547-562.
4. Robinson M, Lee BY, Hane FT. Recent progress in Alzheimer’s disease research, part 2: genetics and epidemiology. J Alzheimers Dis 2017; 57:317-330.
5. Langa KM. Is the risk of Alzheimer’s disease and dementia declining? Alzheimers Res Ther 2015; 7:34.
6. Blennow K, Biscetti L, Eusebi P, Parnetti L. Cerebrospinal fluid biomarkers in Alzheimer’s and Parkinson’s diseases—From pathophysiology to clinical practice. Mov Disord 2016; 31:836-847.
7. Mufson EJ, Ikonomovic MD, Counts SE, Perez SE, Malek-Ahmadi M, Scheff SW, et al. Molecular and cellular pathophysiology of preclinical Alzheimer’s disease. Behav Brain Res 2016; 311:54-69.
8. Hirbod K, Jalili-Baleh L, Nadri H, Ebrahimi SES, Moradi A, Pakseresht B, et al. Coumarin derivatives bearing benzoheterocycle moiety: synthesis, cholinesterase inhibitory, and docking simulation study. Iran J Basic Med Sci 2017; 20:631-638.
9. Singh B, Parsaik AK, Mielke MM, Erwin PJ, Knopman DS, Petersen RC, et al. Association of mediterranean diet with mild cognitive impairment and Alzheimer’s disease: a systematic review and meta-analysis. J Alzheimers Dis 2014; 39:271-282.
10. Razi M. Al-Hawi fi’l-Tibb (Comprehensive Book of Medicine). Hyderabad: Osmania Oriental Publications Bureau; 1968.
11. Jorhani SA. editor: Zakhireh Kharazmshahi (Treasure of Kharazmshahi) Saeedi Sirjani AA, editor. Photo print of the manuscript dated 1206 A.D Tehran: The lranian Culture Foundation.vol3. 462; 1976
12. Ibn-Sina H. Al-Qanun fi’l-Tibb (Canon of Medicine). New Delhi: I.H.M.M.R. Printing Press; 1987.
13. Ahwazi A. Kamel al-Sina’ah al-Tibbiyah (The Perfect Art of the Medicine)(in Arabic): Saadat Press. vol 3.p408; 1877.
14. Akhawayni A. Hedayat al-Mota’allemin fi al-Tibb (An Educational Guide for Medical Students). Mashhad: Ferdowsi University of Mashhad Publication; 1992.
15. Aquili Khorasani MH. Makhzan al-Adwiah (Drug Treasure). Reprinted from a copy which was printed in Calcutta dated in 1844. Tehran: Enqelab-e Eslami Publishing and Educational Organization; 1992.
16.Chashti MAK. Exir-e-Azam. 2 ed. Delhi Nami Monshi Nolkshur; 1884.
17. Bedevian AK. Illustrated polyglottic dictionary of plant names in Latin, Arabic, Armenian, English, French, German, Italian and Turkish languages, including economic, medicinal, poisonous and ornamental plants and common weeds.  1936.
18. Soltani A. Dictionary of medicinal plants. Arjmand Tehran 2004.
19. Hayek M. Encyclopaedia of Medicinal Plants: Arabic-English-French-German-Latin: Librairie du Liban; 1997.
20. Chauhan N, Wang K, Wegiel J, Malik MN. Walnut extract inhibits the fibrillization of amyloid beta-protein, and also defibrillizes its preformed fibrils. Curr Alzheimer Res 2004; 1:183-188.
21. Ghahghaei A, Bathaie SZ, Kheirkhah H, Bahraminejad E. The protective effect of crocin on the amyloid fibril formation of aβ42 peptide in vitro. Cell Mol Biol Lett 2013; 18:328-339.
22. Halawany AME, Sayed NSE, Abdallah HM, Dine RSE. Protective effects of gingerol on streptozotocin-induced sporadic Alzheimer’s disease: emphasis on inhibition of beta-amyloid, COX-2, alpha-, beta - secretases and APH1a. Sci Rep 2017; 7:2902.
23. Mockett BG, Richter M, Abraham WC, Müller UC. Therapeutic potential of secreted amyloid precursor protein APPsα. Front Mol Neurosci 2017; 10:30.
24. Hu J, Lin T, Gao Y, Xu J, Jiang C, Wang G, et al. The resveratrol trimer miyabenol C inhibits β-secretase activity and β-amyloid generation. PLoS One 2015; 10:e0115973.
25. Kumar A, Singh A. A review on Alzheimer’s disease pathophysiology and its management: an update. Pharmacol Rep 2015; 67:195-203.
26. Yan R, Vassar R. Targeting the β secretase BACE1 for Alzheimer’s disease therapy. Lancet Neurol 2014; 13:319-329.
27. Khan SS, Bloom GS. Tau: the center of a signaling nexus in Alzheimer’s disease. Front Neurosci 2016; 10:31.
28. Avila J, Lucas JJ, Perez M, Hernandez F. Role of tau protein in both physiological and pathological conditions. Physiol Rev 2004; 84:361-384.
29. Woodling NS, Colas D, Wang Q, Minhas P, Panchal M, Liang X, et al. Cyclooxygenase inhibition targets neurons to prevent early behavioural decline in Alzheimer’s disease model mice. Brain 2016; 139:2063-2081.
30. Singh M, Kaur M, Kukreja H, Chugh R, Silakari O, Singh D. Acetylcholinesterase inhibitors as Alzheimer therapy: from nerve toxins to neuroprotection. Europ J Med Chem 2013; 70:165-188.
31. García-Ayllón M-S, Riba-Llena I, Serra-Basante C, Alom J, Boopathy R, Sáez-Valero J. Altered levels of acetylcholinesterase in Alzheimer plasma. PLoS One 2010; 5:e8701.
32. Sinaei F, Ahmad Emami S, Sahebkar A, Javadi B. Olfactory Loss Management in View of Avicenna: Focus on Neuroprotective Plants. Curr pharm Des 2017; 23:3315-3321.
33. Nam KN, Park Y-M, Jung H-J, Lee JY, Min BD, Park S-U, et al. Anti-inflammatory effects of crocin and crocetin in rat brain microglial cells. Europ J Pharmacol 2010; 648:110-116.
34. Razhes. Al-Mansuri fi-al-Tibb.
35. Jeong JH, Jeong HR, Jo YN, Kim HJ, Shin JH, Heo HJ. Ameliorating effects of aged garlic extracts against Aβ-induced neurotoxicity and cognitive impairment. BMC Complement Altern Med 2013; 13:268.
36. Chauhan NB. Anti-amyloidogenic effect of Allium sativum in Alzheimer’s transgenic model Tg2576. J Herb Pharmacother 2003; 3:95-107.
37. Chauhan NB. Effect of aged garlic extract on APP processing and tau phosphorylation in Alzheimer’s transgenic model Tg2576. J Ethnopharmacol 2006; 108:385-394.
38. Gupta VB, Indi S, Rao K. Garlic extract exhibits antiamyloidogenic activity on amyloid‐beta fibrillogenesis: relevance to Alzheimer’s disease. Phytother Res 2009; 23:111-115.
39. Singh JH, Alagarsamy V, Diwan PV, Kumar SS, Nisha J, Reddy YN. Neuroprotective effect of Alpinia galanga (L.) fractions on Aβ (25–35) induced amnesia in mice. J Ethnopharmacol 2011; 138:85-91.
40. Hajimehdipoor H, Tehranifar T, Shafaroodi H. Acetylcholinesterase inhibitory effect of some medicinal herbs used in Iranian traditional medicine for memory improvement. Global J Botanical Sci 2013; 1:18-21.
41. Huang X, Tang G, Liao Y, Zhuang X, Dong X, Liu H, et al. 7-(4-Hydroxyphenyl)-1-phenyl-4E-hepten-3-one, a Diarylheptanoid from Alpinia officinarum, Protects Neurons against Amyloid-β Induced Toxicity. Biol Pharm Bull 2016; 39:1961-1967.
42. Javadi B, Sahebkar A, Ahmad Emami S. Medicinal plants for the treatment of asthma: a traditional persian medicine perspective. Curr Pharm Des 2017; 23:1623-1632.
43. Jazayeri SB, Amanlou A, Ghanadian N, Pasalar P, Amanlou M. A preliminary investigation of anticholinesterase activity of some Iranian medicinal plants commonly used in traditional medicine. DARU J Pharm Sci 2014; 22:17.
44. Kim HV, Kim HY, Ehrlich HY, Choi SY, Kim DJ, Kim Y. Amelioration of Alzheimer’s disease by neuroprotective effect of sulforaphane in animal model. Amyloid 2013; 20:7-12.
45. Xu Y, Cartier A, Obielodan M, Jordan K, Hairston T, Shannon A, et al. Nutritional and anti-nutritional composition, and in vitro protein digestibility of Kabuli chickpea (Cicer arietinum L.) as affected by differential processing methods. J Food Meas Charact 2016; 10:625-633.
46. Wahby MM, Mohammed DS, Newairy AA, Abdou HM, Zaky A. Aluminum-induced molecular neurodegeneration: The protective role of genistein and chickpea extract. Food Chem Toxicol 2017; 107:57-67.
47. Clarke R, Smith AD, Jobst KA, Refsum H, Sutton L, Ueland PM. Folate, vitamin B12, and serum total homocysteine levels in confirmed Alzheimer disease. Arch Neurol 1998; 55:1449-1455.
48. Kruman, II, Kumaravel TS, Lohani A, Pedersen WA, Cutler RG, Kruman Y, et al. Folic acid deficiency and homocysteine impair DNA repair in hippocampal neurons and sensitize them to amyloid toxicity in experimental models of Alzheimer’s disease. J Neurosci 2002; 22:1752-1762.
49. Frydman-Marom A, Levin A, Farfara D, Benromano T, Scherzer-Attali R, Peled S, et al. Orally administrated cinnamon extract reduces β-amyloid oligomerization and corrects cognitive impairment in Alzheimer’s disease animal models. PloS one 2011; 6:e16564.
50. Anderson RA, Qin B, Canini F, Poulet L, Roussel AM. Cinnamon counteracts the negative effects of a high fat/high fructose diet on behavior, brain insulin signaling and Alzheimer-associated changes. PloS one 2013; 8:e83243.
51. Radenahmad N, Saleh F, Sawangjaroen K, Vongvatcharanon U, Subhadhirasakul P, Rundorn W, et al. Young coconut juice, a potential therapeutic agent that could significantly reduce some pathologies associated with Alzheimer’s disease: novel findings. Br J nutr 2011; 105:738-746.
52. Fernando WMADB, Martins IJ, Goozee K, Brennan CS, Jayasena V, Martins RN. The role of dietary coconut for the prevention and treatment of Alzheimer’s disease: potential mechanisms of action. Br J nutr 2015; 114:1-14.
53. De JlRO, Sánchez CÁ, Selvi PS, Bueno AC, Sancho SC, Rochina M, et al. How does coconut oil affect cognitive performance in alzheimer patients? Nutr Hosp 2017; 34:352-356.
54. Bahaeddin Z, Yans A, Khodagholi F, Hajimehdipoor H, Sahranavard S. Hazelnut and neuroprotection: Improved memory and hindered anxiety in response to intra-hippocampal Aβ injection. Nutr Neurosci 2017; 20:317-326.
55. Javadi B. Diet Therapy for Cancer Prevention and Treatment Based on Traditional Persian Medicine. Nutr Cancer 2018; 70:376-403.
56. Sobhani Z, Reza Nami S, Ahmad Emami S, Sahebkar A, Javadi B. Medicinal plants targeting cardiovascular diseases in view of Avicenna. Curr Pharm Des 2017; 23:2428-2443.
57. Tafti LD, Shariatpanahi SM, Damghani MM, Javadi B. Traditional Persian topical medications for gastrointestinal diseases. Iran J Basic Med Sci 2017; 20:222.
58. Papandreou MA, Kanakis CD, Polissiou MG, Efthimiopoulos S, Cordopatis P, Margarity M, et al. Inhibitory Activity on Amyloid-β Aggregation and Antioxidant Properties of Crocus sativus Stigmas Extract and Its Crocin Constituents. J Agr Food Chem 2006; 54:8762-8768.
59. Heidari S, Mehri S, Hosseinzadeh H. Memory enhancement and protective effects of crocin against D-galactose aging model in the hippocampus of Wistar rats. Iran J Basic Med Sci 2017; 20:1250-1259.
60. Asadi F, Jamshidi AH, Khodagholi F, Yans A, Azimi L, Faizi M, et al. Reversal effects of crocin on amyloid β-induced memory deficit: Modification of autophagy or apoptosis markers. Pharmacol Biochem Behav 2015; 139:47-58.
61. Khalili M, Hamzeh F. Effects of active constituents of Crocus sativus L., crocin on streptozocin-induced model of sporadic Alzheimer’s disease in male rats. Iran Biomed J 2010; 14:59-65.
62. Akhondzadeh S, Shafiee Sabet M, Harirchian MH, Togha M, Cheraghmakani H, Razeghi S, et al. A 22-week, multicenter, randomized, double-blind controlled trial of Crocus sativus in the treatment of mild-to-moderate Alzheimer’s disease. Psychopharmacol 2010; 207:637-643.
63. Farokhnia M, Shafiee Sabet M, Iranpour N, Gougol A, Yekehtaz H, Alimardani R, et al. Comparing the efficacy and safety of Crocus sativus L. with memantine in patients with moderate to severe Alzheimer’s disease: a double-blind randomized clinical trial. Hum Psychopharmacol 2014; 29:351-359.
64. Kumar S, Chowdhury S. Kinetics of acetylcholinesterase inhibition by an aqueous extract of Cuminum cyminum seeds. Intern J Appl Sci Biotechnol 2014; 2:64-68.
65. Koppula S, Choi DK. Cuminum cyminum extract attenuates scopolamine-induced memory loss and stress-induced urinary biochemical changes in rats: A noninvasive biochemical approach. Pharm Biol 2011; 49:702-708.
66. Kim J-B, Kopalli SR, Koppula S. Cuminum cyminum Linn (Apiaceae) extract attenuates MPTP-induced oxidative stress and behavioral impairments in mouse model of Parkinson’s disease. Trop J  Pharm Res 2016; 15:765-772.
67. Morshedi D, Aliakbari F, Tayaranian‐Marvian A, Fassihi A, Pan‐Montojo F, Pérez‐Sánchez H. Cuminaldehyde as the major component of Cuminum cyminum, a natural aldehyde with inhibitory effect on alpha‐synuclein fibrillation and cytotoxicity. J Food Sci 2015; 80.
68. Essa MM, Subash S, Akbar M, Al-Adawi S, Guillemin GJ. Long-term dietary supplementation of pomegranates, figs and dates alleviate neuroinflammation in a transgenic mouse model of Alzheimer’s disease. PLoS One 2015; 10:e0120964.
69. Subash S, Essa MM, Braidy N, Al-Jabri A, Vaishnav R, Al-Adawi S, et al. Consumption of fig fruits grown in Oman can improve memory, anxiety, and learning skills in a transgenic mice model of Alzheimer’s disease. Nutr Neurosci 2016; 19:475-483.
70. Subash S, Essa MM, Al-Asmi A, Al-Adawi S, Vaishnav R. Chronic Dietary Supplementation of 4% Figs on the Modification of Oxidative Stress in Alzheimer’s Disease Transgenic Mouse Model. BioMed Res Intern 2014; 2014:8.
71. Khojah H, Edrada-Ebel R. Identification of bioactive metabolites from Ficus carica and their neuroprotective effects of Alzheimer’s disease. Intern J Med Health Sci 2017; 11.
72. Lim GP, Calon F, Morihara T, Yang F, Teter B, Ubeda O, et al. A diet enriched with the omega-3 fatty acid docosahexaenoic acid reduces amyloid burden in an aged Alzheimer mouse model. J Neurosci 2005; 25:3032-3040.
73. Morris MC, Evans DA, Bienias JL, Tangney CC, Bennett DA, Wilson RS, et al. Consumption of fish and n-3 fatty acids and risk of incident Alzheimer disease. Arch Neurol 2003; 60:940-946.
74. Huang TL, Zandi P, Tucker K, Fitzpatrick A, Kuller L, Fried L, et al. Benefits of fatty fish on dementia risk are stronger for those without APOE ε4. Neurol 2005; 65:1409-1414.
75. van Gelder BM, Tijhuis M, Kalmijn S, Kromhout D. Fish consumption, n− 3 fatty acids, and subsequent 5-y cognitive decline in elderly men: the Zutphen Elderly Study–. Am J of Clin Nutr 2007; 85:1142-1147.
76. Koppula S, Kumar H. Foeniculum vulgare Mill (Umbelliferae) attenuates stress and improves memory in wister rats. Trop J Pharm Res 2013; 12:553-558.
77. Joshi H, Parle M. Cholinergic basis of memory-strengthening effect of Foeniculum vulgare Linn. J Med Food 2006; 9:413-417.
78. Bhatti S, Ali Shah SA, Ahmed T, Zahid S. Neuroprotective effects of Foeniculum vulgare seeds extract on lead-induced neurotoxicity in mice brain. Drug Chem Toxicol 2018:1-9.
79. Bhadra S, Mukherjee PK, Kumar NS, Bandyopadhyay A. Anticholinesterase activity of standardized extract of Illicium verum Hook. f. fruits. Fitoterapia 2011; 82:342-346.
80. Akanmu MA, Olowookere TA, Atunwa SA, Ibrahim BO, Lamidi OF, Adams PA, et al. Neuropharmacological effects of Nigerian honey in mice. Afr J Tradit Complement Altern Med 2011; 8:230-249.
81. Abdulmajeed WI, Sulieman HB, Zubayr MO, Imam A, Amin A, Biliaminu SA, et al. Honey prevents neurobehavioural deficit and oxidative stress induced by lead acetate exposure in male wistar rats- a preliminary study. Metabol Brain Dis 2016; 31:37-44.
82. Al-Rahbi B, Zakaria R, Othman Z, Hassan A, Mohd Ismail ZI, Muthuraju S. Tualang honey supplement improves memory performance and hippocampal morphology in stressed ovariectomized rats. Acta Histochem 2014; 116:79-88.
83. Saxena AK, Phyu HP, Al-Ani IM, Talib NA. Potential protective effect of honey against chronic cerebral hypoperfusion-induced neurodegeneration in rats. Journal of the Anatomical Society of India 2014; 63:151-155.
84. Chepulis LM, Starkey NJ, Waas JR, Molan PC. The effects of long-term honey, sucrose or sugar-free diets on memory and anxiety in rats. Physiol Behav 2009; 97:359-368.
85. Ljubenkov I, Kri A, Juki M. Antioxidant and acetylcholinesterase inhibiting activity of several aqueous tea infusions in vitro. Food Technol Biotechnol 2008; 46:368-375.
86. Shakeri A, Sahebkar A, Javadi B. Melissa officinalis L.–A review of its traditional uses, phytochemistry and pharmacology. J Ethnopharmacol 2016; 188:204-228.
87. Ferreira A, Proenca C, Serralheiro ML, Araujo ME. The in vitro screening for acetylcholinesterase inhibition and antioxidant activity of medicinal plants from Portugal. J Ethnopharmacol 2006; 108:31-37.
88. Dastmalchi K, Ollilainen V, Lackman P, Boije af Gennas G, Dorman HJ, Jarvinen PP, et al. Acetylcholinesterase inhibitory guided fractionation of Melissa officinalis L. Bioorg Med Chem 2009; 17:867-871.
89. Pereira RP, Boligon AA, Appel AS, Fachinetto R, Ceron CS, Tanus-Santos JE, et al. Chemical composition, antioxidant and anticholinesterase activity of Melissa officinalis. Indust Crops Prod 2014; 53:34-45.
90. Kihara T, Shimohama S. Alzheimer’s disease and acetylcholine receptors. Acta Neurobiol Exp (Wars) 2004; 64:99-105.
91. Wake G, Court J, Pickering A, Lewis R, Wilkins R, Perry E. CNS acetylcholine receptor activity in European medicinal plants traditionally used to improve failing memory. J Ethnopharmacol 2000; 69:105-114.
92. Soodi M, Naghdi N, Hajimehdipoor H, Choopani S, Sahraei E. Memory-improving activity of Melissa officinalis extract in naive and scopolamine-treated rats. Res Pharm Sci 2014; 9:107-114.
93. Tsai FS, Peng WH, Wang WH, Wu CR, Hsieh CC, Lin YT, et al. Effects of luteolin on learning acquisition in rats: involvement of the central cholinergic system. Life Sci 2007; 80:1692-1698.
94. Tsai FS, Cheng HY, Hsieh MT, Wu CR, Lin YC, Peng WH. The ameliorating effects of luteolin on beta-amyloid-induced impairment of water maze performance and passive avoidance in rats. Am J Chin Med 2010; 38:279-291.
95. Lu J, Zheng YL, Wu DM, Luo L, Sun DX, Shan Q. Ursolic acid ameliorates cognition deficits and attenuates oxidative damage in the brain of senescent mice induced by D-galactose. Biochem Pharmacol 2007; 74:1078-1090.
96. Kennedy DO, Scholey AB, Tildesley NT, Perry EK, Wesnes KA. Modulation of mood and cognitive performance following acute administration of Melissa officinalis (lemon balm). Pharmacol Biochem Behav 2002; 72:953-964.
97. Kennedy DO, Wake G, Savelev S, Tildesley NT, Perry EK, Wesnes KA, et al. Modulation of mood and cognitive performance following acute administration of single doses of Melissa officinalis (Lemon balm) with human CNS nicotinic and muscarinic receptor-binding properties. Neuropsychopharmacol 2003; 28:1871-1881.
98. Akhondzadeh S, Noroozian M, Mohammadi M, Ohadinia S, Jamshidi A, Khani M. Melissa officinalis extract in the treatment of patients with mild to moderate Alzheimer’s disease: a double blind, randomised, placebo controlled trial. J Neurol, Neurosurg Psych2003; 74:863-866.
99. Butterfield DA, Castegna A, Pocernich CB, Drake J, Scapagnini G, Calabrese V. Nutritional approaches to combat oxidative stress in Alzheimer’s disease. J Nutr Biochem 2002; 13:444-461.
100. Butterfield DA, Pocernich CB, Drake J. Elevated glutathione as a therapeutic strategy in Alzheimer’s disease. Drug Dev Res 2002; 56:428-437.
101. Luo J, Wärmländer SK, Gräslund A, Abrahams JP. Non-chaperone proteins can inhibit aggregation and cytotoxicity of Alzheimer amyloid β peptide. J Biol Chem 2014; 289:27766-27775.
102. Dhingra D, Parle M, Kulkarni S. Comparative brain cholinesterase-inhibiting activity of Glycyrrhiza glabra, Myristica fragrans, ascorbic acid, and metrifonate in mice. J Med Food 2006; 9:281-283.
103. Parle M, Dhingra D, Kulkarni S. Improvement of mouse memory by Myristica fragrans seeds. J Med Food 2004; 7:157-161.
104. Van der Auwera I, Wera S, Van Leuven F, Henderson ST. A ketogenic diet reduces amyloid beta 40 and 42 in a mouse model of Alzheimer’s disease. Nutri Metab 2005; 2:28.
105. Ingkaninan K, Temkitthawon P, Chuenchom K, Yuyaem T, Thongnoi W. Screening for acetylcholinesterase inhibitory activity in plants used in Thai traditional rejuvenating and neurotonic remedies. J Ethnopharmacol 2003; 89:261-264.
106. Adhami HR, Farsam H, Krenn L. Screening of medicinal plants from Iranian traditional medicine for acetylcholinesterase inhibition. Phytother Res 2011; 25:1148-1152.
107. Chonpathompikunlert P, Wattanathorn J, Muchimapura S. Piperine, the main alkaloid of Thai black pepper, protects against neurodegeneration and cognitive impairment in animal model of cognitive deficit like condition of Alzheimer’s disease. Food Chem Toxicol 2010; 48:798-802.
108. Golchin L, Shabani M, Harandi S, Razavinasab M. Pistachio supplementation attenuates motor and cognition impairments induced by cisplatin or vincristine in rats. Adv biomed Res 2015; 4.
109. Salari E, Baloochi M, Shamsizedeh A, Ayoobi F, Allahtavakoli M, Taghavi Y, et al. Effect of the hydroalcoholic extract of pistachio on avoidance learning in male Wistar rats.  2014.
110. Hernández-Alonso P, Bulló M, Salas-Salvadó J. Pistachios for Health: What Do We Know About This Multifaceted Nut? Nutr Today 2016; 51:133.
111. Kulkarni KS, Kasture S, Mengi S. Efficacy study of Prunus amygdalus (almond) nuts in scopolamine-induced amnesia in rats. Ind J Pharmacol2010; 42:168.
112. Batool Z, Agha F, Ahmad S, Liaquat L, Tabassum S, Khaliq S, et al. Attenuation of cadmium-induced decline in spatial, habituation and recognition memory by long-term administration of almond and walnut supplementation: Role of cholinergic function. Pak J Pharm Sci 2017; 30:273-279.
113. Kornsteiner M, Wagner K-H, Elmadfa I. Tocopherols and total phenolics in 10 different nut types. Food Chem 2006; 98:381-387.
114. Jimenez-Jimenez FJ, de Bustos F, Molina JA, Benito-Leon J, Tallon-Barranco A, Gasalla T, et al. Cerebrospinal fluid levels of alpha-tocopherol (vitamin E) in Alzheimer’s disease. J Neural Transm (Vienna) 1997; 104:703-710.
115. Sano M, Ernesto C, Thomas RG, Klauber MR, Schafer K, Grundman M, et al. A controlled trial of selegiline, alpha-tocopherol, or both as treatment for Alzheimer’s disease. New Eng J Med 1997; 336:1216-1222.
116. Gol M, Ghorbanian D, Soltanpour N, Faraji J, Pourghasem M. Protective effect of raisin (currant) against spatial memory impairment and oxidative stress in Alzheimer disease model. Nutr Neurosci 2017:1-9.
117. Wang YJ, Thomas P, Zhong JH, Bi FF, Kosaraju S, Pollard A, et al. Consumption of grape seed extract prevents amyloid-beta deposition and attenuates inflammation in brain of an Alzheimer’s disease mouse. Neurotox Res 2009; 15:3-14.
118. Marambaud P, Zhao H, Davies P. Resveratrol promotes clearance of Alzheimer’s disease amyloid-β peptides. J Biol Chem 2005; 280:37377-37382.
119. Karuppagounder SS, Pinto JT, Xu H, Chen H-L, Beal MF, Gibson GE. Dietary supplementation with resveratrol reduces plaque pathology in a transgenic model of Alzheimer’s disease. Neurochem Intern 2009; 54:111-118.
120. Porquet D, Casadesús G, Bayod S, Vicente A, Canudas AM, Vilaplana J, et al. Dietary resveratrol prevents Alzheimer’s markers and increases life span in SAMP8. AGE 2013; 35:1851-1865.
121. Porquet D, Grinan-Ferre C, Ferrer I, Camins A, Sanfeliu C, del Valle J, et al. Neuroprotective role of trans-resveratrol in a murine model of familial Alzheimer’s disease. J Alzheimers Dis 2014; 42:1209-1220.
122. Senol FS, Orhan IE, Kurkcuoglu M, Khan MTH, Altintas A, Sener B, et al. A mechanistic investigation on anticholinesterase and antioxidant effects of rose (Rosa damascena Mill.). Food Res Intern 2013; 53:502-509.
123. Esfandiary E, Karimipour M, Mardani M, Ghanadian M, Alaei HA, Mohammadnejad D, et al. Neuroprotective effects of Rosa damascena extract on learning and memory in a rat model of amyloid-beta-induced Alzheimer’s disease. Adv Biomed Res 2015; 4:131.
124. Mohammadpour T, Hosseini M, Naderi A, Karami R, Sadeghnia HR, Soukhtanloo M, et al. Protection against brain tissues oxidative damage as a possible mechanism for the beneficial effects of Rosa damascena hydroalcoholic extract on scopolamine induced memory impairment in rats. Nutr Neurosci 2015; 18:329-336.
125. Rezvani-Kamran A, Salehi I, Shahidi S, Zarei M, Moradkhani S, Komaki A. Effects of the hydroalcoholic extract of Rosa damascena on learning and memory in male rats consuming a high-fat diet. Pharm Biol 2017; 55:2065-2073.
126. Esfandiary E, Karimipour M, Mardani M, Alaei H, Ghannadian M, Kazemi M, et al. Novel effects of Rosa damascena extract on memory and neurogenesis in a rat model of Alzheimer’s disease. J Neurosci Res 2014; 92:517-530.
127. Zhu S, Li H, Dong J, Yang W, Liu T, Wang Y, et al. Rose Essential Oil Delayed Alzheimer’s Disease-Like Symptoms by SKN-1 Pathway in C. elegans. J Agr Food Chem 2017; 65:8855-8865.
128. Shekhar S, Yadav Y, Singh AP, Pradhan R, Desai GR, Dey A, et al. Neuroprotection by ethanolic extract of Syzygium aromaticum in Alzheimer’s disease like pathology via maintaining oxidative balance through SIRT1 pathway. Exper Gerontol 2018.
129. Pant A, Prakash P, Pandey R, Kumar R. Syzygium aromaticum (L.) elicits lifespan extension and attenuates age-related Aβ-induced proteotoxicity in Caenorhabditis elegans. Cogent Biology 2016; 2:1218412.
130. Soni K, Parle M. Trachyspermum ammi Seeds Supplementation Helps Reverse Scopolamine, Alprazolam and Electroshock Induced Amnesia. Neurochem Res 2017; 42:1333-1344.
131. Satheeshkumar N, Mukherjee PK, Bhadra S, Saha B. Acetylcholinesterase enzyme inhibitory potential of standardized extract of Trigonella foenum graecum L and its constituents. Phytomed 2010; 17:292-295.
132. Prema A, Justin Thenmozhi A, Manivasagam T, Mohamed Essa M, Guillemin GJ. Fenugreek seed powder attenuated aluminum chloride-induced tau pathology, oxidative stress, and inflammation in a rat model of Alzheimer’s disease. J Alzheimers Dis 2017; 60:S209-S220.
133. Oboh G, Ademiluyi AO, Akinyemi AJ. Inhibition of acetylcholinesterase activities and some pro-oxidant induced lipid peroxidation in rat brain by two varieties of ginger (Zingiber officinale). Exp Toxicol Pathol 2012; 64:315-319.
134. Wattanathorn J, Jittiwat J, Tongun T, Muchimapura S, Ingkaninan K. Zingiber officinale Mitigates Brain Damage and Improves Memory Impairment in Focal Cerebral Ischemic Rat. Evid Based Complement Alternat Med 2011; 2011:8.
135. Mathew M, Subramanian S. In vitro evaluation of anti-Alzheimer effects of dry ginger (Zingiber officinale Roscoe) extract. Indian J Exp Biol 2014; 52:606-612.
136. Ghayur MN, Gilani AH, Ahmed T, Khalid A, Nawaz SA, Agbedahunsi JM, et al. Muscarinic, Ca++ antagonist and specific butyrylcholinesterase inhibitory activity of dried ginger extract might explain its use in dementia. J Pharm Pharmacol 2008; 60:1375-1383.
137. Saenghong N, Wattanathorn J, Muchimapura S, Tongun T, Piyavhatkul N, Banchonglikitkul C, et al. Zingiber officinale Improves Cognitive Function of the Middle-Aged Healthy Women. Evid Based Complement Alternat Med 2012; 2012:9.
138. Solfrizzi V, Panza F, Frisardi V, Seripa D, Logroscino G, Imbimbo BP, et al. Diet and Alzheimer’s disease risk factors or prevention: the current evidence. Expert review of neurotherapeutics 2011; 11:677-708.
139. Scarmeas N, Stern Y, Tang MX, Mayeux R, Luchsinger JA. Mediterranean diet and risk for Alzheimer’s disease. Ann Neurol 2006; 59:912-921.
140. Hardman RJ, Kennedy G, Macpherson H, Scholey AB, Pipingas A. Adherence to a Mediterranean-style diet and effects on cognition in adults: a qualitative evaluation and systematic review of longitudinal and prospective trials. Front Nutr 2016; 3:22.