Purification and characterization of a novel type of neurotoxic peptides from the venom of the Iranian scorpion Hemiscorpius lepturus

Document Type: Original Article


1 Department of Biochemistry, Fars Science and Research Branch, Islamic Azad University, Fars, Iran

2 Department of Biochemistry, Shiraz Branch, Islamic Azad University, Shiraz, Iran

3 Department of Human Vaccine and Serum, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj, Iran


Objective(s): Scorpion venom has toxic effects on mammals, insects and crustaceans.  Toxicogenic peptides are major contributors to the scorpion venom, which make it toxic. The Hemiscorpius lepturus (H. lepturus) is one of the most common scorpion bites agent, and responsible for 95% of scorpion bite deaths cases in Iran.
Materials and Methods: In this project, we fractionated the H. lepturus scorpion venom and analyzed toxic fractions of the venom. The crude venom of H. lepturus was dialyzed against distilled water and then the soluble part of the venom was isolated from the non-soluble (mucoproteins) part of the venom and loaded onto the Sephadex G-50 gel filtration column, then after determining the toxicity of the obtained fractions (fractions toxicity were detected in mice by IV injection), the resulting toxic fraction was purified with three stages of ion-exchange chromatography (anion and cationic) and RP-HPLC. The purity of the fractions was verified by SDS-PAGE electrophoreses.
Results: The LD50 of H. lepturus venom was 177.01 µg/mouse. The crude venom had 7 detectable bands with molecular weights of 10-100 KDa and one band less than 10 KDa. Finally, after the different stages of chromatography, two HL2153 and HL2155 peaks were obtained from the RP-HPLC, which were depicted single bands and high purity. The electrophoretic analysis showed molecular weight 4874 Da for HL2153 and 5107 Da for HL2155 toxins.
Conclusion: It is concluded that H. lepturus venom contains two HL2153 and HL2155 toxins with a relatively similar molecular weight and similar electrical charge 4874 and 5107 Da, respectively.


1. Radmanesh M. Cutaneous manifestations of the Hemiscorpius lepturus sting: a clinical study. Int J Dermatol 1998; 37: 500-507.
2. Jalali A. Pipelzadeh MH, Sayedian R, Rowan E. A review of epidemiological, clinical and in vitro physiological studies of envenomation by the scorpion Hemiscorpius lepturus (Hemiscorpiidae) in Iran. Toxicon 2010; 55: 173–179.
3. Radmanesh M. Clinical study of Hemiscorpion lepturus in Iran. J Trop Med Hyg 1990; 93: 327-332.
4. Lewis RJ, Garcia ML. Therapeutic potential of venom peptides. Nat Rev Drug Discov 2003; 2: 790-802.
5. Torres-Larios A, Gurrola GB,  Zamudio FZ, Possani LD. Hadrurin, a new antimicrobial peptide from the venom of the scorpion Hadrurus aztecus. Eur J Biochem 2000; 267: 5023-5031.
6. Wang DC, Guan R, Wang CG, Wang M. A depressant insect toxin with a novel analgesic effect from scorpion Buthus martensii Karsch. Biochim Biophys Acta 2001; 1549: 9-18.
7. Zhijian C, Feng L, Wenxin L. Genetic mechanisms of scorpion venom peptide diversification. Toxicon 2006; 47: 348-355.
8. Possani, LD, Rodríguez de la Vega RC. Scorpion venom peptides. In: Kastin, A.J. (Ed.), The Handook of Biologically Active Peptides. Academic Press, San Diego, CA, USA; 2006.p. 339–354.
9. Dehesa-Davila, M. Alagon, AC, Possani, LD. Clinical toxicology of scorpion stings in: Meier, G and White, G. (ed). Clinical Toxicology of Animal Venoms and Poisons. CRC Press; 1995.  215-221.
10. Rodriguez de la Vega RC, Possani  LD. Overview of scorpion toxins specific for Na+ channels and related peptides: biodiversity, structure–function relationships and evolution. Toxicon 2005; 46: 831-844.
11. Rodríguez de la Vega RC, Merino E, Becerril B, Possani LD. Novel interactions between K+ channels and scorpion toxins. Trends Pharmacol Sci 2003; 24: 222-227.
12. Rodriguez de la Vega RC, Possani LD. Current views on scorpion toxins specific for KC-channels. Toxicon 2004; 43: 865–875.
13. Possani LD, Merino E, Corona M, Bolivar F, Becerril B. Peptides and genes coding for scorpion toxins that affect ion-channels. Biochimie 2000; 82: 861-868.
14. Latifi M, Tabatabaai M. Scorpion antivenom production in Iran. Loth World Congress on Animal and Microbial Toxins. (1991 October 30).
15. Jäger H, Dreker T, Buck A, Giehl K, Gress T, Grissmer S. Blockage of intermediate-conductance Ca2+ activated K+ channels inhibit human pancreatic cancer cell growth in vitro. Mol Pharmacol 2004; 65: 630-638.
16. Roos KL. Emerging antimicrobial-resistant infections. Arch Neurol 2004;  61: 1512-1514.
17. Pinheiro CB, Marangoni S, Toyama MH, Polikarpov I. Structural analysis of Tityus serrulatus Ts1 neurotoxin at atomic resolution: insights into interactions with Na+ channels. Acta Cryst 2003; 59: 405-415.  
18. Possani LD, Beceril B, Delepierre M, Tytgat J. Scorpion toxins specific for Na+ -channels. Eur J Biochem 1999; 264: 287–300.
19. Srinivasan KN, Gopalakrishnakone P, Tan PT, Chew KC, Cheng B, Kini RM, et al. Scorpion, a molecular database of scorpion toxins. Toxicon 2001; 40: 23–31.
20. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976; 72: 248-254.
21. Spearman and karber. A trimmed method for estimating median lethal concentration in toxicity bioassay. Environ Sci Technol 1977; 11: 714-719.
22. Batista CF, Suze GD, Gómez-Lagunas F,  Zamudio FZ, Sergio Encarnación S, Sevcik C, et al. Proteomic analysis of Tityus discrepans scorpion venom and amino acid sequence of novel toxins. Proteomics 2005; 6: 3718–3727.
23. Dent MA, Possani LD, Ramirez GA, Fletcher JPL. Purification and characterization of two mammalian toxins from the venom of the Mexican scorpion Centruroides noxius Hoffmann. Toxicon  1980; 18: 343–350.
24. Pujatti PB, Simal CJR, Santos R. Preparation of Crotalus venom radiolabeled with technetium-99m as a tool for biodistribution study. Braz Arch Biol Technol 2005; 48: 9-12.
25. Miranda F, Kupeyan, Rochat H, Rochat C, Lissitzky S. Purification of animal neurotoxins. Isolation and characterization of eleven neurotoxins from the venoms of the scorpions Androctonus australis hector, Buthus occitanus tunetanus and Leiurus quinquestriatus quinquestriatus. Eur J Biochem 1970; 16: 514-23.
26. Rong G, Yong Z, Ponnampalam G. Purification and N-terminal sequence of a serine proteinase-like protein (BMK-CBP) from the venom of the Chinese scorpion (Buthus martensii Karsch). Toxicon 2008; 52: 348–353.
27. Xu B, Hellman U, Ersson B, Janson JC. Purification, characterization and amino-acid sequence analysis of a thermostable, low molecular mass endo-beta-1,4-glucanase from blue mussel, Mytilus edulis. Eur J Biochem 2000; 267:4970-4977.
28. Najet SA, Pascal M, Thouraya M, Habib K, Herve ÂR, FrancËois S, et al. Purification, characterization and molecular modelling of two toxin‐like proteins from the Androctonus australis Hector venom. Eur J Biochem 2000; 267: 5614-5620.
29. Laemmli K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970; 227: 680-685.
30. Richard JS. Staining proteins in gels with silver nitrate (protocols): This protocol was adapted from “Peptide Mapping and Sequence Analysis of Gel-Resolved Proteins,” Chapter 7, in Proteins and Proteomics by Richard J. Simpson. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA; 2003.
31. Alami M,  Ouafik L, Céard B, Legros C, Bougis  P E,  Martin-Eauclaire  M. Characterization  of  the  gene  en- coding  the  α-toxin  Amm  V  from  the  scorpion  Androctonus mauretonicus mauretonicus . Toxicon 2001; 39: 1579-1585.
32. Chen Z, Reddy G, Hahin R. The isolation an purification of two peptides from the venom of Buthus martensii Karsh. Toxicon  2000; 38: 1817-1832.
33. Chung CY, Funamato S, Firte RA. Signaling pathways controlling cell polarity and chemotaxis. Trends Biochem Sci 2001; 26: 557-566.
34. Uçar  G,  Taş  C. Cholinesterase  inhibitory  activities  of  the  scorpion  Mesobuthus  gibbosus (Buthidae)  venom  peptides.  FABAD J Pharm Sci 2003; 28: 61-70.
35. Uçar G, Taş  C, Tümer A. Monoamine  oxidase  inhibitory activities of scorpion Mesobuthus gibbosus  (Buthidae) venom peptides. Toxicon 2005; 45: 43–52.
36. Zlotkin E,  Shulov S. Recent  studies  on  the  mode  of  action  of  scorpion  neurotoxins,  A  review.  Toxicon 1969; 7:217-221.
37. Pourkhalili K, Kim E, Mashayekhy N, Kamyab M, Hoseiny SM, Evazy R, et al. Cardiotoxic and arrhythmogenic effects of Hemiscorpius lepturus scorpion venom in rats. J Arthropod-Borne Dis. 2015; 9: 215-225.
38. Pimenta AMC, Martin-Eauclaire M, Rochat H,  Figuerido SG,  Kalapothakis E,  Afonso LC, et al. Purification, amino-acid sequence and partial  characterization  of  two  toxins  with  anti-insect  activity  from  the  venom of the South American scorpion Tityus bahiensis (Buthidae). Toxicon 2001; 39: 1009-1019.  
39. Caliskan F, Quintero-Hernández V, Restano-Cassulini R, Batista CVF, Zamudio FZ, Coronas FI, et al. Turkish scorpion Buthacus macrocentrus: General characterization of the venom and description of Bu1, a potent mammalian Na+-channel α-toxin. Toxicon 2012; 59: 408–415.
40. Shahbazzadeh D, Srairi-Abid N, Wei Feng W,  Ram N, Borchani L, Ronjat M, et al. Hemicalcin, a new toxin from the Iranian scorpion Hemiscorpius lepturus which is active on ryanodine-sensitive Ca2+ channels. Biochem J 2007; 404:89-96.
41. Srinivasan KN, Sivaraja V, Huys I, Sasaki T, Cheng B, Kumar TK, et al. Kappa-Hefutoxin1, a novel toxin from the scorpion Heterometrus fulvipes with unique structure and function. Importance of the functional diad in potassium channel selectivity. J Biol Chem 2007; 277:30040-30047.
42. Oukkache N, Rosso JP, Alami M, Ghalim N, Saïle R, Hassar M, et al. New analysis of the toxic compounds from the Androctonus mauretanicus mauretanicus scorpion venom. Toxicon 2008; 51: 835-852.
43. Zhu MS, Song DX, Li TH. A new species of family the raphosidae, with taxonomic study on the species selenocosmal hainan (arachnida: araneae). J Baod TC 2001; 14:1-6.
44. Zlotkin E, Fishman Y, Elazar M. AaIT: from neurotoxin to insecticide. Biochimie 2000; 82: 869-881.
45. Hahin R, Chen Z, Reddy G. The isolation and characterization of a peptide that alters sodium channels from Buthus martensii Karsch. Toxicon  2000; 38: 645-60.