Microbiome alterations are related to an imbalance of immune response and bacterial translocation in BDL-rats

Document Type : Original Article

Authors

1 Instituto de Investigación en Enfermedades Crónico Degenerativas, Departamento de Biología Molecular y Genómica. Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara. CP 44340, Guadalajara, Jalisco, México

2 Instituto de Investigación en Inmunodeficiencias y VIH. Departamento de Clínicas Médicas. Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara. CP 44340, Guadalajara, Jalisco, México

3 FISABIO Fundación para el fomento de la Investigación Sanitaria y Biomédica de la comunidad de Valencia. CP 46015, España

4 División de Inmunología, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social. CP 44340, Guadalajara, Jalisco, México

5 Departamento de Ciencias Biomédicas, Centro Universitario de Tonalá, Universidad de Guadalajara. CP 45425, Tonalá, Jalisco, México

6 Unidad de VIH, Antiguo Hospital Civil de Guadalajara “Fray Antonio Alcalde”. CP 44280, Guadalajara, Jalisco, México

7 Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara. CP 44340, Guadalajara, Jalisco, México

8 Laboratorio de Inmunología, Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara. CP 44600, Guadalajara, Jalisco, México

9 Departamento de Ciencias de la Salud, Centro Universitario de los Valles, Universidad de Guadalajara. CP 46600, Ameca, Jalisco, México

Abstract

Objective(s): Bacterial translocation in patients with cirrhosis is an important triggering factor for infections and mortality. In the bile duct ligation (BDL) model, crucial players of bacterial translocation are still unknown. This study aims to determine the interrelation between microbiome composition in the colon, mesenteric lymph nodes, and liver, as well as the local inflammatory microenvironment in the BDL model.
Materials and Methods: Liver damage was assayed by Masson trichrome staining, and hepatic enzymes. The diversity of microbiota in colon stools, mesenteric lymph nodes, and liver was determined by 16S rRNA pyrosequencing. Cytokine expression in mesenteric lymph nodes was analyzed by qRT-PCR.
Results: Our results show that Proteobacteria was the predominant phylum found to translocate to mesenteric lymph nodes and liver in cirrhotic rats. Bile duct ligation induces a drastic intestinal dysbiosis, revealed by an increased relative abundance of Sarcina, Clostridium, Helicobacter, Turicibacter, and Streptococcus genera. However, beneficial bacteria, such as Lactobacillus, Prevotella and Ruminococcus were found to be notably decreased in BDL groups. Mesenteric pro-inflammatory (TNF-α, IL-1β, IL-6, TLR-4) and regulatory (TGF-β, Foxp3, and IL-10) molecules at 30 days post-BDL were significantly increased. Conversely, TGF-β and Foxp3 were significantly augmented at 8 days post-BDL.
Conclusion: Dysbiosis in the colon and mesenteric lymph nodes is linked to an imbalance in the immune response; therefore, this may be an important trigger for bacterial translocation in the BDL model.

Keywords


1. Noor MT, Manoria P. Immune dysfunction in cirrhosis. J Clin Transl Hepatol. 2017;5:50.
2. Alexopoulou A, Agiasotelli D, Vasilieva LE, Dourakis SP. Bacterial translocation markers in liver cirrhosis. Ann Gastroenterol. 2017;30:486-497.
3. Taneja SK, Dhiman RK. Prevention and management of bacterial infections in cirrhosis. Int J Hepatol. 2011;2011:1–7.
4. Cuenca S, Sanchez E, Santiago A, El Khader I, Panda S, Vidal S, et al Microbiome composition by pyrosequencing in mesenteric lymph nodes of rats with CCl4-induced cirrhosis. J Innate Immun. 2014;6:263–271.
5. De Minicis S, Rychlicki C, Agostinelli L, Saccomanno S, Candelaresi C, Trozzi L, et al. Dysbiosis contributes to fibrogenesis in the course of chronic liver injury in mice. Hepatol Baltim Md. 2014 ;59:1738–1349.
6. Lee SS, Girod C, Braillon A, Hadengue A, Lebrec D. Hemodynamic characterization of chronic bile duct-ligated rats: effect of pentobarbital sodium. Am J Physiol. 1986;251(2 Pt 1):G176-180.
7. Ishak K, Baptista A, Bianchi L, Callea F, De Groote J, Gudat F, et al. Histological grading and staging of chronic hepatitis. J Hepatol. 1995; 22:696–699.
8. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010 ;7:335–336.
9. Walder RY, Wattiez A-S, White SR, Marquez de Prado B, Hamity MV, Hammond DL. Validation of four reference genes for quantitative mRNA expression studies in a rat model of inflammatory injury. Mol Pain. 2014; 10:55.
10. Wen J-B, Zhu F-Q, Chen W-G, Jiang L-P, Chen J, Hu Z-P, et al. Oxymatrine improves intestinal epithelial barrier function involving NF-κB-mediated signaling pathway in CCl4-induced cirrhotic rats. PLOS ONE. 2014 ;9:e106082.
11. Zepeda-Morales ASM, Del Toro-Arreola S, García-Benavides L, Bastidas-Ramírez BE, Fafutis-Morris M, Pereira-Suárez AL, et al. Liver fibrosis in bile duct-ligated rats correlates with increased hepatic IL-17 and TGF-β2 expression. Ann Hepatol. 2016 ;15:418-426.
12. Ponziani FR, Zocco MA, Cerrito L, Gasbarrini A, Pompili M. Bacterial translocation in patients with liver cirrhosis: physiology, clinical consequences, and practical implications. Expert Rev Gastroenterol Hepatol. 2018;12:641–656.
13. Bernardi M, Caraceni P. Novel perspectives in the management of decompensated cirrhosis. Nat Rev Gastroenterol Hepatol. 2018;15:753-764.
14. Fouts DE, Torralba M, Nelson KE, Brenner DA, Schnabl B. Bacterial translocation and changes in the intestinal microbiome in mouse models of liver disease. J Hepatol. 2012;56:1283-1292.
15. Ogata Y, Nishi M, Nakayama H, Kuwahara T, Ohnishi Y, Tashiro S. Role of bile in intestinal barrier function and its inhibitory effect on bacterial translocation in obstructive jaundice in rats. J Surg Res. 2003;115:18–23.
16. Eutamene H, Lamine F, Chabo C, Theodorou V, Rochat F, Bergonzelli GE, et al. Synergy between Lactobacillus paracasei and its bacterial products to counteract stress-induced gut permeability and sensitivity increase in rats. J Nutr. 2007;137:1901–1907.
17. Vega-Magaña N, Delgado-Rizo V, García-Benavides L, Del Toro-Arreola S, Segura-Ortega J, Morales ASMZ, et al. Bacterial translocation is linked to increased intestinal IFN-γ, IL-4, IL-17, and mucin-2 in cholestatic rats. Ann Hepatol. 2018;17:318–329.
18. Yu W, Du H, Fu Q, Cui N, Du X. The influence of Th1/Th2 and CD4+ regulatory t cells of mesenteric lymph nodes on systemic lipopolysaccharide. Pol J Pathol Off J Pol Soc Pathol. 2014 ;65:125–129.
19. Ratajczak W, Rył A, Mizerski A, Walczakiewicz K, Sipak O, Laszczyńska M. Immunomodulatory potential of gut microbiome-derived short-chain fatty acids (SCFAs). Acta Biochim Pol. 2019
20. Islam KBMS, Fukiya S, Hagio M, Fujii N, Ishizuka S, Ooka T, et al. Bile acid is a host factor that regulates the composition of the cecal microbiota in rats. Gastroenterology. 2011;141:1773-1781.
21. Shin N-R, Whon TW, Bae J-W. Proteobacteria: microbial signature of dysbiosis in gut microbiota. Trends Biotechnol. 2015;33:496–503.
22. Comstock LE. Importance of glycans to the host-bacteroides mutualism in the mammalian intestine. Cell Host Microbe. 2009 ;5:522–526.
23. De Filippis F, Pasolli E, Tett A, Tarallo S, Naccarati A, De Angelis M, et al. Distinct genetic and functional traits of human intestinal prevotella copri strains are associated with different habitual diets. Cell Host Microbe. 2019;25:444-453.
24. Wang Y, Liu L, Moore DJ, Shen X, Peek RM, Acra SA, et al. An LGG-derived protein promotes IgA production through upregulation of APRIL expression in intestinal epithelial cells. Mucosal Immunol. 2017; 10:373-384.
25. Biddle A, Stewart L, Blanchard J, Leschine S. Untangling the Genetic Basis of Fibrolytic Specialization by Lachnospiraceae and Ruminococcaceae in Diverse Gut Communities. Diversity. 2013 ;5:627-640.
26. Graziani F, Pujol A, Nicoletti C, Dou S, Maresca M, Giardina T, et al. Ruminococcus gnavus E1 modulates mucin expression and intestinal glycosylation. J Appl Microbiol. 2016;120:1403-1417.
27. Thacker K, Jevon G, Whan E. Gastrointestinal: Unusual presentation of duodenal web in an infant. J Gastroenterol Hepatol. 2016;31:1512.
28. Cingi A, Ahiskali R, Oktar BK, Gülpinar MA, Yegen C, Yegen BC. Biliary decompression reduces the susceptibility to ethanol-induced ulcer in jaundiced rats. Physiol Res. 2002;51:619-627.
29. Palm NW, de Zoete MR, Cullen TW, Barry NA, Stefanowski J, Hao L, et al. Immunoglobulin A coating identifies colitogenic bacteria in inflammatory bowel disease. Cell. 2014 ;158:1000-1010.
30. Dinh DM, Volpe GE, Duffalo C, Bhalchandra S, Tai AK, Kane AV, et al. Intestinal microbiota, microbial translocation, and systemic inflammation in chronic HIV infection. J Infect Dis. 2015;211:19–27.
31. Kaakoush NO. Insights into the Role of Erysipelotrichaceae in the Human Host. Front Cell Infect Microbiol. 2015;5:84.