Preparation and in vivo evaluation of nanoliposomes containing vancomycin after intravitreal injection in albino rabbits

Document Type: Short Communication

Authors

1 Eye Research Center, Mashhad University of Medical Sciences, Mashhad, Iran

2 Retina Research Center, Mashhad University of Medical Sciences, Mashhad, Iran

3 Nanotechnology Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran

4 Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran

Abstract

Objective(s): The in vivo efficacy of nanoliposomal formulation of vancomycin against methicillin-resistant Staphylococcus aureus (MRSA) assessed.
Materials and Methods: Nanoliposomal formulations were prepared and characterized. The in vivo study was carried out on rabbits which received liquid culture medium containing MRSA under anesthesia. After 48 hr, the eyes treated with the liposomal and free form of vancomycin. The rabbits were euthanized at predesignate intervals at 12, 24, 48, 96, 144 hr intervals injection. The antibacterial activity of different vancomycin formulations was assayed by the time killing method.
Results: The zeta potential, mean sizes and encapsulation efficacy of liposomal vancomycin were 29.7 mV, 381.93±30.13 nm and 47%, respectively. The results of time–killing studies indicated that the liposomal formula was more effective than the free form of vancomycin.
Conclusion: The results of this study revealed that liposomal vancomycin formulation is a powerful nano-antibacterial agent to combat infectious endophthalmitis.

Keywords


1. Relhan N, Albini TA, Pathengay A, Kuriyan AE, Miller D, Flynn HW. Endophthalmitis caused by Gram-positive organisms with reduced vancomycin susceptibility: literature review and options for treatment. Br J Ophthalmol 2016; 100:446-452.
2. Shivaramaiah HS, Relhan N, Pathengay A, Mohan N, Flynn HW, Jr. Endophthalmitis caused by gram-positive bacteria resistant to vancomycin: Clinical settings, causative organisms, antimicrobial susceptibilities, and treatment outcomes. Am J Ophthalmol Case Rep 2018; 10:211-214.
3. Ooishi M, Miyao M, Abe T. Bacterial endophthalmitis. Nihon Rinsho 1994; 52:495-501.
4. Sepahvandi A, Eskandari M, Moztarzadeh F. Drug Delivery Systems to the Posterior Segment of the Eye: Implants and Nanoparticles. BioNanoScience 2016; 6:276-283.
5. Pachis K, Blazaki S, Tzatzarakis M, Klepetsanis P, Naoumidi E, Tsilimbaris M, et al. Sustained release of intravitreal flurbiprofen from a novel drug-in-liposome-in-hydrogel formulation. Eur J Pharm Sci 2017; 109:324-333.
6. Reimondez-Troitino S, Csaba N, Alonso MJ, de la Fuente M. Nanotherapies for the treatment of ocular diseases. Eur J Pharm Biopharm 2015; 95:279-293.
7. Diab R, Khameneh B, Joubert O, Duval R. Insights in nanoparticle-bacterium interactions: new frontiers to bypass bacterial resistance to antibiotics. Curr Pharm Des 2015; 21:4095-4105.
8. Morrison PW, Khutoryanskiy VV. Advances in ophthalmic drug delivery. Ther Deliv 2014; 5:1297-1315.
9. Meisner D, Mezei M. Liposome ocular delivery systems. Adv Drug Deliv Rev 1995; 16:75-93.
10.    de Sa FA, Taveira SF, Gelfuso GM, Lima EM, Gratieri T. Liposomal voriconazole (VOR) formulation for improved ocular delivery. Colloids Surf B Biointerfaces 2015; 133:331-338.
11.    Shayani Rad M, Khameneh B, Sabeti Z, Mohajeri SA, Fazly Bazzaz BS. Antibacterial activity of slver nanoparticle-loaded soft contact lens materials: the effect of monomer composition. Curr Eye Res 2016; 41:1286-1293.
12.    Alami-Milani M, Zakeri-Milani P, Valizadeh H, Salehi R, Jelvehgari M. Preparation and evaluation of PCL-PEG-PCL micelles as potential nanocarriers for ocular delivery of dexamethasone. Iran J Basic Med Sci 2018; 21:153-164.
13.    Tan G, Yu S, Pan H, Li J, Liu D, Yuan K, et al. Bioadhesive chitosan-loaded liposomes: A more efficient and higher permeable ocular delivery platform for timolol maleate. Int J Biol Macromol 2017; 94:355-363.
14.    Chetoni P, Monti D, Tampucci S, Matteoli B, Ceccherini-Nelli L, Subissi A, et al. Liposomes as a potential ocular delivery system of distamycin A. Int J Pharm 2015; 492:120-126.
15.    Agarwal R, Iezhitsa I, Agarwal P, Abdul Nasir NA, Razali N, Alyautdin R, et al. Liposomes in topical ophthalmic drug delivery: an update. Drug Deliv 2016; 23:1075-1091.
16.    Stratford RE, Jr., Yang DC, Redell MA, Lee VH. Ocular distribution of liposome-encapsulated epinephrine and inulin in the albino rabbit. Curr Eye Res 1982; 2:377-386.
17.    Mehanna MM, Elmaradny HA, Samaha MW. Mucoadhesive liposomes as ocular delivery system: physical, microbiological, and in vivo assessment. Drug Dev Ind Pharm 2010; 36:108-118.
18.    Nikoofal-Sahlabadi S, Mohajeri SA, Banaee T, Abedini E, Malaekeh-Nikouei B. Evaluation of cyclosporine A eye penetration after administration of liposomal or conventional forms in animal model. Nanomed J 2013; 1:48-54.
19.    Mehravaran A, Rezaei Nasab M, Mirahmadi H, Sharifi I, Alijani E, Nikpoor AR, et al. Immunogenicity and protection effects of cationic liposome containing imiquimod adjuvant on leishmaniasis in BALB/c mice. Iran J Basic Med Sci 2019; 22:922-931.
20.    Bochot A, Fattal E. Liposomes for intravitreal drug delivery: a state of the art. J Control Release 2012; 161:628-634.
21.    Bochot A, Lajavardi L, Camelo S, Bourges JL, Behar-Cohen F, de Kozak Y, et al. [Potential of liposomes for the intravitreal injection of therapeutic molecules]. Ann Pharm Fr 2011; 69:100-107.
22.    Eriksen AZ, Brewer J, Andresen TL, Urquhart AJ. The diffusion dynamics of PEGylated liposomes in the intact vitreous of the ex vivo porcine eye: A fluorescence correlation spectroscopy and biodistribution study. Int J Pharm 2017; 522:90-97.
23.    Wong CW, Czarny B, Metselaar JM, Ho C, Ng SR, Barathi AV, et al. Evaluation of subconjunctival liposomal steroids for the treatment of experimental uveitis. Sci Rep 2018; 8:6604.
24.    Fazly Bazzaz BS, Khameneh B, Namazi N, Iranshahi M, Davoodi D, Golmohammadzadeh S. Solid lipid nanoparticles carrying Eugenia caryophyllata essential oil: the novel nanoparticulate systems with broad-spectrum antimicrobial activity. Lett Appl Microbiol 2018; 66:506-513.
25.    Ferrari F, Sorrenti M, Rossi S, Catenacci L, Sandri G, Bonferoni MC, et al. Vancomycin-triacetyl cyclodextrin interaction products for prolonged drug delivery. Pharm Dev Technol 2008; 13:65-73.
26.    Khanum B, Guha R, Sur VP, Nandi S, Basak SK, Konar A, et al. Pirfenidone inhibits post-traumatic proliferative vitreoretinopathy. Eye (Lond) 2017; 31:1317-1328.
27.    Khameneh B, Iranshahy M, Ghandadi M, Ghoochi Atashbeyk D, Fazly Bazzaz BS, Iranshahi M. Investigation of the antibacterial activity and efflux pump inhibitory effect of co-loaded piperine and gentamicin nanoliposomes in methicillin-resistant Staphylococcus aureus. Drug Dev Ind Pharm 2015; 41:989-994.
28.    Moghadas-Sharif N, Fazly Bazzaz BS, Khameneh B, Malaekeh-Nikouei B. The effect of nanoliposomal formulations on Staphylococcus epidermidis biofilm. Drug Dev Ind Pharm 2015; 41:445-450.
29.    Khameneh B, Momen-nejad M, Tafaghodi M. In vivo evaluation of mucoadhesive properties of nanoliposomal formulations upon coating with trimethylchitosan polymer. Nanomed J 2014; 1:147-154.
30.    Elbialy NS, Abdol-Azim BM, Shafaa MW, El Shazly LH, El Shazly AH, Khalil WA. Enhancement of the ocular therapeutic effect of prednisolone acetate by liposomal entrapment. J Biomed Nanotechnol 2013; 9:2105-2116.
31.    Abrishami M, Zarei-Ghanavati S, Soroush D, Rouhbakhsh M, Jaafari MR, Malaekeh-Nikouei B. Preparation, characterization, and in vivo evaluation of nanoliposomes-encapsulated bevacizumab (avastin) for intravitreal administration. Retina 2009; 29:699-703.
32.    He W, Guo X, Feng M, Mao N. In vitro and in vivo studies on ocular vitamin A palmitate cationic liposomal in situ gels. Int J Pharm 2013; 458:305-314.
33.    Fitzgerald P, Hadgraft J, Kreuter J, Wilson CG. A γ-scintigraphic evaluation of microparticulate ophthalmic delivery systems: liposomes and nanoparticles. Int J Pharm 1987; 40:81-84.