Insights into role of microRNAs in cardiac development, cardiac diseases, and developing novel therapies

Document Type : Review Article

Authors

1 Cardiogenetic Research Center, Rajaie Cardiovascular, Medical, and Research Center, Iran University of Medical Sciences, Tehran, Iran

2 Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran

Abstract

Objective(s): MicroRNAs (miRNAs) are a subfamily of small noncoding RNAs that play a variety of roles in regulating gene expression in nearly all organisms. They affect different biological pathways by post-transcriptionally regulating mRNAs. Aside from miRNAs’  role in maintaining cellular homeostasis, their perturbation is related to several pathologic states and diseases. Cardiovascular disorders are considered some of the most mortal multifactorial diseases that are caused by the deregulation of network of genes and effects of environmental factors. In this review, we discuss the role of miRNAs  in cardiac homeostasis and malfunctions.
Materials and Methods: We reviewed published research on association and role of miRNAs  in cardiac development and diseases and investigated the possible links between regulatory miRNAs  and different cardiac disorders.
Results: Research shows that manipulating miRNAs expression affects the integrity and functionality of the cardiovascular system. Moreover, deregulation of miRNAs, is observed in many cardiac diseases. These findings intensify the pivotal role of miRNAs in the development and specific pathological disorders of the cardiovascular system.
Conclusion: In this review, we summarized the latest findings on the involvement of miRNAs in cardiac development, and continued by their role in congenital heart diseases and rheumatic heart disease, which are some of the leading causes of infant death and cardiovascular morbidity and mortality. Considering the significance of miRNAs in cardiac homeostasis and malfunctions, they are considered as promising therapeutic targets in cardiovascular diseases.

Keywords


1. Fuster V, Kelly BB. Promoting cardiovascular health in the developing world: a critical challenge to achieve global health. 1st ed. National Academies Press; 2010.
2. Hoffman JI, Kaplan S. The incidence of congenital heart disease. JACC CardioOncol 2002; 39:1890-1900.
3. Tennant PW, Pearce MS, Bythell M, Rankin J. 20-year survival of children born with congenital anomalies: a population-based study. Lancet 2010; 375:649-656.
4. Sun C, Kontaridis M. Physiology of Cardiac Development: From Genetics to Signaling to Therapeutic Strategies. Curr Opin Physiol 2018; 1:123-139.
5. Van Den Berg G, Moorman AF. Concepts of cardiac development in retrospect. Pediatr Cardiol 2009; 30:580-587.
6. Mandel EM, Callis TE, Wang D-Z, Conlon FL. Transcriptional mechanisms of congenital heart disease. Drug Discov Today Dis Mech 2005; 2:33-38.
7. Cecchetto A, Rampazzo A, Angelini A, Bianco LD, Padalino M, Stellin G, et al. From molecular mechanisms of cardiac development to genetic substrate of congenital heart diseases. Future Cardiol 2010; 6:373-393.
8. Meyers EN, Martin GR. Differences in left-right axis pathways in mouse and chick: functions of FGF8 and SHH. Science 1999; 285:403-406.
9. Van Rooij E, Olson EN. MicroRNA therapeutics for cardiovascular disease: opportunities and obstacles. Nat Rev Drug Discov 2012; 11:860-872.
10. Albinsson S, Suarez Y, Skoura A, Offermanns S, Miano JM, Sessa WC. MicroRNAs are necessary for vascular smooth muscle growth, differentiation, and function. Arterioscler Thromb Vasc Biol 2010; 30:1118-1126.
11. Bartel DP, Chen C-Z. Micromanagers of gene expression: the potentially widespread influence of metazoan microRNAs. Nat Rev Genet 2004; 5:396-400.
12. Small EM, Olson EN. Pervasive roles of microRNAs in cardiovascular biology. Nature 2011; 469:336-342.
13. Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993; 75:843-854.
14. Wightman B, Ha I, Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 1993; 75:855-862.
15. Ha M, Kim VN. Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol 2014; 15:509-524.
16. Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J 2004; 23:4051-4060.
17. Rodriguez A, Griffiths-Jones S, Ashurst JL, Bradley A. Identification of mammalian microRNA host genes and transcription units. Genome Res 2004; 14:1902-1910.
18. Conrad T, Marsico A, Gehre M, Ørom UA. Microprocessor Activity Controls Differential miRNA Biogenesis In Vivo. Cell Rep 2015; 10:542-554.
19. Murchison EP, Hannon GJ. miRNAs on the move: miRNA biogenesis and the RNAi machinery. Curr Opin Cell Biol 2004; 16:223-229.
20. Kim VN, Han J, Siomi MC. Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 2009; 10:126-139.
21. Hutvágner G, Zamore PD. A microRNA in a multiple-turnover RNAi enzyme complex. Science 2002; 297:2056-2060.
22. Chen J-F, Murchison EP, Tang R, Callis TE, Tatsuguchi M, Deng Z, et al. Targeted deletion of Dicer in the heart leads to dilated cardiomyopathy and heart failure. Proc Natl Acad Sci U S A 2008; 105:2111-2116.
23. Zhao Y, Ransom JF, Li A, Vedantham V, von Drehle M, Muth AN, et al. Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell 2007; 129:303-317.
24. da Costa Martins PA, Bourajjaj M, Gladka M, Kortland M, van Oort RJ, Pinto YM, et al. Conditional dicer gene deletion in the postnatal myocardium provokes spontaneous cardiac remodeling. Circulation 2008; 118:1567-1576.
25. Cordes KR, Srivastava D. MicroRNA regulation of cardiovascular development. Circ Res 2009; 104:724-732.
26. Li B, Meng X, Zhang L. MicroRNAs and cardiac stem cells in heart development and disease. Drug Discov Today 2018; 24:233-240.
27. Vacante F, Denby L, Sluimer JC, Baker AH. The function of miR-143, miR-145 and the miR-143 host gene in cardiovascular development and disease. Vascul Pharmacol 2018; 112:24-30.
28. Heidersbach A, Saxby C, Carver-Moore K, Huang Y, Ang Y-S, de Jong PJ, et al. microRNA-1 regulates sarcomere formation and suppresses smooth muscle gene expression in the mammalian heart. Elife 2013; 2:e01323-63.
29. Eulalio A, Mano M, Dal Ferro M, Zentilin L, Sinagra G, Zacchigna S, et al. Functional screening identifies miRNAs inducing cardiac regeneration. Nature 2012; 492:376-381.
30. Wei Y, Peng S, Wu M, Sachidanandam R, Tu Z, Zhang S, et al. Multifaceted roles of miR-1s in repressing the fetal gene program in the heart. Cell Res 2014; 24:278-292.
31. Chen J, Huang Z-P, Seok HY, Ding J, Kataoka M, Zhang Z, et al. mir-17–92 cluster is required for and sufficient to induce cardiomyocyte proliferation in postnatal and adult hearts. Circ Res 2013; 112:1557-1566.
32. Van Rooij E, Quiat D, Johnson BA, Sutherland LB, Qi X, Richardson JA, et al. A family of microRNAs encoded by myosin genes governs myosin expression and muscle performance. Dev Cell 2009; 17:662-673.
33. Rao PK, Kumar RM, Farkhondeh M, Baskerville S, Lodish HF. Myogenic factors that regulate expression of muscle-specific microRNAs. Proc Natl Acad Sci U S A 2006; 103:8721-8726.
34. Chen J-F, Mandel EM, Thomson JM, Wu Q, Callis TE, Hammond SM, et al. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet 2006; 38:228-233.
35. Zhao Y, Samal E, Srivastava D. Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature 2005; 436:214-220.
36. Zhao Y, Jaber V, Percy ME, Lukiw WJ. A microRNA cluster (let-7c, miRNA-99a, miRNA-125b, miRNA-155 and miRNA-802) encoded at chr21q21. 1-chr21q21. 3 and the phenotypic diversity of Down’s syndrome (DS; trisomy 21). J Nat Sci 2017; 3:e446-453.
37. Ivey KN, Muth A, Arnold J, King FW, Yeh R-F, Fish JE, et al. MicroRNA regulation of cell lineages in mouse and human embryonic stem cells. Cell stem cell 2008; 2:219-229.
38. Weiss A, Leinwand LA. The mammalian myosin heavy chain gene family. Annu Rev Cell Dev Biol 1996; 12:417-439.
39. Callis TE, Pandya K, Seok HY, Tang R-H, Tatsuguchi M, Huang Z-P, et al. MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice. J Clin Invest 2009; 119:2772-2786.
40. Van Rooij E, Sutherland LB, Qi X, Richardson JA, Hill J, Olson EN. Control of stress-dependent cardiac growth and gene expression by a microRNA. Science 2007; 316:575-579.
41. Baldwin KM, Haddad F. Invited review: effects of different activity and inactivity paradigms on myosin heavy chain gene expression in striated muscle. J Appl Physiol 2001; 90:345-357.
42. Porrello ER. microRNAs in cardiac development and regeneration. Clin Sci (Lond) 2013; 125:151-166.
43. Wang J, Greene SB, Bonilla-Claudio M, Tao Y, Zhang J, Bai Y, et al. Bmp signaling regulates myocardial differentiation from cardiac progenitors through a MicroRNA-mediated mechanism. Dev Cell 2010; 19:903-912.
44. Chen J, Huang Z-P, Seok H, Ding J, Kataoka M, Zhang Z, et al. mir-17-92 cluster is required for and sufficient to induce cardiomyocyte proliferation in postnatal and adult hearts. Circ Res 2013;. 112:1557-66.
45. Ai F, Zhang Y, Peng B. miR-20a regulates proliferation, differentiation and apoptosis in P19 cell model of cardiac differentiation by targeting Smoothened. Biol Open 2016; 5:1260-1265.
46. Xiang R, Lei H, Chen M, Li Q, Sun H, Ai J, et al. The miR-17-92 cluster regulates FOG-2 expression and inhibits proliferation of mouse embryonic cardiomyocytes. Braz J Med Biol Res 2012; 45:131-138.
47. Tevosian SG, Deconinck AE, Tanaka M, Schinke M, Litovsky SH, Izumo S, et al. FOG-2, a cofactor for GATA transcription factors, is essential for heart morphogenesis and development of coronary vessels from epicardium. Cell 2000; 101:729-739.
48. Porrello ER, Johnson BA, Aurora AB, Simpson E, Nam Y-J, Matkovich SJ, et al. MiR-15 family regulates postnatal mitotic arrest of cardiomyocytes. Circ Res 2011; 111:670-679.
49. Kolpa HJ, Peal DS, Lynch SN, Giokas AC, Ghatak S, Misra S, et al. miR-21 represses Pdcd4 during cardiac valvulogenesis. Development 2013; 140:2172-2180.
50. Thum T, Galuppo P, Wolf C, Fiedler J, Kneitz S, van Laake LW, et al. MicroRNAs in the human heart. Circulation 2007; 116:258-267.
51. Maleki M, Alizadehasl A, Haghjoo M. Practical cardiology. 1st Ed. Elsevier; 2017.
52. Khairy P, Ionescu-Ittu R, Mackie AS, Abrahamowicz M, Pilote L, Marelli AJ. Changing mortality in congenital heart disease. J Am Coll Cardiol 2010; 56:1149-1157.
53. Bensemlali M, Bajolle F, Ladouceur M, Fermont L, Lévy M, Le Bidois J, et al. Associated genetic syndromes and extracardiac malformations strongly influence outcomes of fetuses with congenital heart diseases. Arch Cardiovasc Dis 2016; 109:330-336.
54. Li J, Cao Y, Ma X-j, Wang H-j, Zhang J, Luo X, et al. Roles of miR-1-1 and miR-181c in ventricular septal defects. Int J Cardiol 2013; 168:1441-1446.
55. Das S, Bedja D, Campbell N, Dunkerly B, Chenna V, Maitra A, et al. miR-181c regulates the mitochondrial genome, bioenergetics, and propensity for heart failure in vivo. PloS one 2014; 9:e96820-9.
56. Smith T, Rajakaruna C, Caputo M, Emanueli C. MicroRNAs in congenital heart disease. Ann Transl Med 2015; 3:333-343.
57. Li D, Ji L, Liu L, Liu Y, Hou H, Yu K, et al. Characterization of circulating microRNA expression in patients with a ventricular septal defect. PLoS One 2014; 9:e106318-10.
58. Li J, Dong X, Wang Z, Wu J. MicroRNA-1 in cardiac diseases and cancers. Korean J Physiol Pharmacol 2014; 18:359-363.
59. O’Brien JE, Jr., Kibiryeva N, Zhou XG, Marshall JA, Lofland GK, Artman M, et al. Noncoding RNA expression in myocardium from infants with tetralogy of Fallot. Circ Cardiovasc Genet 2012; 5:279-286.
60. Bittel DC, Kibiryeva N, Marshall JA, O’Brien JE. MicroRNA-421 dysregulation is associated with tetralogy of Fallot. Cells 2014; 3:713-723.
61. Liu N, Williams AH, Kim Y, McAnally J, Bezprozvannaya S, Sutherland LB, et al. An intragenic MEF2-dependent enhancer directs muscle-specific expression of microRNAs 1 and 133. Proc Natl Acad Sci U S A 2007; 104:20844-20849.
62. Liu N, Bezprozvannaya S, Williams AH, Qi X, Richardson JA, Bassel-Duby R, et al. microRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart. Genes Dev 2008; 22:3242-3254.
63. Ventura A, Young AG, Winslow MM, Lintault L, Meissner A, Erkeland SJ, et al. Targeted deletion reveals essential and overlapping functions of the miR-17∼ 92 family of miRNA clusters. Cell 2008; 132:875-886.
64. Kuhn DE, Nuovo GJ, Martin MM, Malana GE, Pleister AP, Jiang J, et al. RETRACTED: Human chromosome 21-derived miRNAs are overexpressed in down syndrome brains and hearts. Biochem Biophys Res Commun 2008; 370:473-477.
65. Latronico MV, Condorelli G. MicroRNAs and cardiac pathology. Nat Rev Cardiol 2009; 6:418-429.
66. Han J, Lee Y, Yeom K-H, Kim Y-K, Jin H, Kim VN. The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev 2004; 18:3016-3027.
67. Omran A, Elimam D, Webster KA, Shehadeh LA, Yin F. MicroRNAs: a new piece in the paediatric cardiovascular disease puzzle. Cardiol Young 2013; 23:642-655.
68. Kim T-K, Hemberg M, Gray JM. Enhancer RNAs: a class of long noncoding RNAs synthesized at enhancers. Cold Spring Harb Perspect Biol; 7:a018622-a018622.
69. Zheng D, Xu L, Sun L, Feng Q, Wang Z, Shao G, et al. Comparison of the ventricle muscle proteome between patients with rheumatic heart disease and controls with mitral valve prolapse: HSP 60 may be a specific protein in RHD. Biomed Res Int 2014; 2014:151726-9.
70. Guilherme L, Kalil J. Rheumatic heart disease: molecules involved in valve tissue inflammation leading to the autoimmune process and anti-s. pyogenes vaccine. Front Immunol 2013; 4:352-358.
71. Peterlongo P, Caleca L, Cattaneo E, Ravagnani F, Bianchi T, Galastri L, et al. The rs12975333 variant in the miR-125a and breast cancer risk in Germany, Italy, Australia and Spain. J Med Genet 2011; 48:703-704.
72. Li N, Lian J, Zhao S, Zheng D, Yang X, Huang X, et al. Detection of differentially expressed micrornas in rheumatic heart disease: miR-1183 and miR-1299 as potential diagnostic biomarkers. Biomed Res Int 2015; 2015:524519-21.
73. Hu M, Wei X, Li M, Tao L, Wei L, Zhang M, et al. Circular RNA expression profiles of persistent atrial fibrillation in patients with rheumatic heart disease. Anadolu Kardiyol Derg 2019; 21:2-10.
74. Paul P, Chakraborty A, Sarkar D, Langthasa M, Rahman M, Bari M, et al. Interplay between miRNAs and human diseases. J Cell Physiol 2018; 233:2007-2018.
75. Gumus G, Giray D, Bobusoglu O, Tamer L, Karpuz D, Hallioglu O. MicroRNA values in children with rheumatic carditis: a preliminary study. Rheumatol Int 2018; 38:1199-1205.
76. Zhu QY, Liu Q, Chen JX, Lan K, Ge BX. MicroRNA-101 targets MAPK phosphatase-1 to regulate the activation of MAPKs in macrophages. J Immunol 2010; 185:7435-7442.
77. Lu Q, Sun Y, Duan Y, Li B, Xia J, Yu S, et al. Comprehensive microRNA profiling reveals potential augmentation of the IL1 pathway in rheumatic heart valve disease. BMC Cardiovasc Disord 2018; 18:53-65.
78. Dong H, Sun Y, Shan F, Sun Q, Yang B. Down-regulation of miR-101 contributes to rheumatic heart disease through up-regulating TLR2. Med Sci Monit 2015; 21:1500-1506.
79. Huang Y, Li J. MicroRNA208 family in cardiovascular diseases: therapeutic implication and potential biomarker. J Physiol Biochem 2015; 71:479-486.
80. Knabel MK, Ramachandran K, Karhadkar S, Hwang HW, Creamer TJ, Chivukula RR, et al. Systemic delivery of scAAV8-encoded MiR-29a ameliorates hepatic fibrosis in carbon tetrachloride-treated mice. PLoS One 2015; 10:e0124411-27.
81. Lovric J, Mano M, Zentilin L, Eulalio A, Zacchigna S, Giacca M. Terminal differentiation of cardiac and skeletal myocytes induces permissivity to AAV transduction by relieving inhibition imposed by DNA damage response proteins. Mol Ther 2012; 20:2087-2097.
82. Thum T. MicroRNA therapeutics in cardiovascular medicine. EMBO Mol Med 2012; 4:3-14.
83. Canfran-Duque A, Rotllan N, Zhang X, Fernandez-Fuertes M, Ramirez-Hidalgo C, Araldi E, et al. Macrophage deficiency of miR-21 promotes apoptosis, plaque necrosis, and vascular inflammation during atherogenesis. EMBO Mol Med 2017; 9:1244-1262.
84. Malakootian M, Mirzadeh Azad F, Fouani Y, Taheri Bajgan E, Saberi H, Mowla SJ. Anti-differentiation non-coding RNA, ANCR, is differentially expressed in different types of brain tumors. J Neurooncol 2018; 138:261-270.
85. Jeng MY, Mumbach MR, Granja JM, Satpathy AT, Chang HY, Chang ALS. Enhancer connectome nominates target genes of inherited risk variants from inflammatory skin disorders. J Invest Dermatol 2019; 139:605-614.
86. Pivarcsi A, Széll M, Kemény L, Dobozy A, Bata-Csörgő Z. Serum factors regulate the expression of the proliferation-related genes α5 integrin and keratin 1, but not keratin 10, in HaCaT keratinocytes. Arch Dermatol Res 2001; 293:206-213.
87. Chen Y, Gao D-Y, Huang L. In vivo delivery of miRNAs for cancer therapy: challenges and strategies. Adv Drug Deliv Rev 2015; 81:128-141.
88. Olson EN. MicroRNAs as therapeutic targets and biomarkers of cardiovascular disease. Sci Transl Med.  2014; 6:239ps2-33.
89. Chakraborty C, Sharma AR, Sharma G, Doss CGP, Lee SS. Therapeutic miRNA and siRNA: moving from bench to clinic as next generation medicine. Mol Ther Nucleic Acids 2017; 8:132-143.