A novel formulation of Mtb72F DNA vaccine for immunization against tuberculosis

Document Type: Original Article

Authors

1 Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran

2 Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran

3 Nanotechnology Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran

4 Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran

5 Laboratory Division, Fatemieh Hospital, Hamadan University of Medical Sciences, Hamadan, Iran

6 Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran

7 Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran

8 Mashhad University of Medical Sciences, Mashhad, Iran

9 Mashhad Branch, Isalmic Azad University, Mashhad, Iran

10 Immunobiochemistry Lab, Allergy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran

Abstract

Objective(s): Mycobacterium tuberculosis (M. tuberculosis), an intracellular pathogen, causes 1.5 million deaths globally. Bacilli Calmette-Guérin (BCG) is commonly administered to protect people against M. tuberculosis infection; however, there are some obstacles with this first-generation vaccine. DNA vaccines, the third generation vaccines, can induce cellular immune responses for tuberculosis (TB) protection. In this study, optimized DNA vaccine (pcDNA3.1-Mtb72F) entrapped in poly (lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) was used to achieve higher immunogenicity.
Materials and Methods: Plasmid Mtb72F was formulated in PLGA NPs using double emulsion method in the presence of TB10.4 and/or CpG as an adjuvant. Female BALB/c mice were immunized either with NP-encapsulated Mtb72F or naked Mtb72F with or without each adjuvant, using the BCG-prime DNA boost regimen.
Results: These NPs were approximately 250 nm in diameter and the nucleic acid and protein encapsulation efficiency were 80% and 25%, respectively. The NPs smaller than 200 nm are able to promote cellular rather than humoral responses. The immunization with the formulation consisting of Mtb72F DNA vaccine and TB10.4 entrapped in PLGA NPs showed significant immunogenicity and induced predominantly interferon-ɣ (IFN-ɣ) production and higher INF-ɣ/interleukin-4 (IL-4) ratio in the cultured spleen cells supernatant.
Conclusion: PLGA NPs loaded with Mtb72F DNA-based vaccine with TB10.4 could be considered as a promising candidate for vaccination against TB. These results represent an excellent initial step toward development of novel vaccine for TB protection.

Keywords


1.    Silva A, Soema P, Slütter B, Ossendorp F, Jiskoot W. Plga particulate delivery systems for subunit vaccines: Linking particle properties to immunogenicity. Hum Vaccin Immunother 2016;12:1056-1069.
2.    Morozkin ES, Laktionov PP, Rykova EY, Vlassov VV. Fluorometric quantification of rna and DNA in solutions containing both nucleic acids. Anal Biochem 2003;322:48-50.
3.    Martin C. The dream of a vaccine against tuberculosis; new vaccines improving or replacing bcg? Eur Respir J 2005;26:162-167.
4.    Wilkie MEM, McShane H. Tb vaccine development: Where are we and why is it so difficult? Thorax 2015;70:299-301.
5.    Skeiky YA, Alderson MR, Ovendale PJ, Guderian JA, Brandt L, Dillon DC, et al. Differential immune responses and protective efficacy induced by components of a tuberculosis polyprotein vaccine, mtb72f, delivered as naked DNA or recombinant protein. J Immunol 2004;172:7618-7628.
6.    Van Der Meeren O, Hatherill M, Nduba V, Wilkinson RJ, Muyoyeta M, Van Brakel E, et al. Phase 2b controlled trial of m72/as01e vaccine to prevent tuberculosis. N Engl J Med 2018;379:1621-1634.
7.    Havlir DV, Wallis RS, Boom WH, Daniel TM, Chervenak K, Ellner JJ. Human immune response to Mycobacterium tuberculosis antigens. Infect Immun 1991;59:665-670.
8.    Hervas-Stubbs S, Majlessi L, Simsova M, Morova J, Rojas M-J, Nouzé C, et al. High frequency of cd4+ t cells specific for the tb10. 4 protein correlates with protection against Mycobacterium tuberculosis infection. Infect Immun 2006;74:3396-407.
9.    Nabavinia MS, Ramezani M, Gholoobi A, Naderinasab M, Meshkat Z. Construction of mtb72f plasmid as a DNA vaccine candidate for Mycobacterium tuberculosis. Insect Biochem Mol Biol 2017;6:95-101.
10.    Gholoobi A, Sankian M, Zarif R, Farshadzadeh Z, Youssefi F, Sadeghian A, et al. Molecular cloning, expression and purification of protein tb10.4 secreted by mycobacterium tuberculosis. Iran J Basic Med Sci 2010;13:189-193.
11.    Lee J, Kumar SA, Jhan YY, Bishop CJ. Engineering DNA vaccines against infectious diseases. Acta Biomater 2018;80:31-47.
12.    Hasson SSAA, Al-Busaidi JKZ, Sallam TA. The past, current and future trends in DNA vaccine immunisations. Asian Pac J Trop Biomed 2015;5:344-353.
13.    Sardesai NY, Weiner DB. Electroporation delivery of DNA vaccines: Prospects for success. Curr Opin Immunol 2011;23:421-429.
14.    Yurina V. Live bacterial vectors—a promising DNA vaccine delivery system. Medical Sciences 2018;6:27-39.
15.    Farris E, Brown DM, Ramer-Tait AE, Pannier AK. Micro-and nanoparticulates for DNA vaccine delivery. Exp Biol Med (Maywood) 2016;241:919-929.
16.    Sun X, Xu C, Wu G, Ye Q, Wang C. Poly (lactic-co-glycolic acid): Applications and future prospects for periodontal tissue regeneration. Polymers 2017;9:189-208.
17.    Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Préat V. Plga-based nanoparticles: An overview of biomedical applications. J Control Release 2012;161:505-522.
18.    Newman KD, Elamanchili P, Kwon GS, Samuel J. Uptake of poly (d, l‐lactic‐co‐glycolic acid) microspheres by antigen‐presenting cells in vivo. J Biomed Mater Res 2002;60:480-486.
19.    Jiang W, Gupta RK, Deshpande MC, Schwendeman SP. Biodegradable poly (lactic-co-glycolic acid) microparticles for injectable delivery of vaccine antigens. Adv Drug Deliv Rev 2005;57:391-410.
20.    Mohaghegh M, Tafaghodi M. Dextran microspheres could enhance immune responses against plga nanospheres encapsulated with tetanus toxoid and quillaja saponins after nasal immunization in rabbit. Pharm Dev Technol 2011;16:36-43.
21.    Gvili K, Benny O, Danino D, Machluf M. Poly(d,l‐lactide‐co‐glycolide acid) nanoparticles for DNA delivery: Waiving preparation complexity and increasing efficiency. Biopolymers 2007;85:379-391.
22.    De Temmerman M-L, Demeester J, De Vos F, De Smedt SC. Encapsulation performance of layer-by-layer microcapsules for proteins. Biomacromolecules 2011;12:1283-1289.
23.    Dolan K. Laboratory animal law: Legal control of the use of animals in research. 2 nd ed: John Wiley & Sons; 2008.
24.    Anderson JD, Johansson HJ, Graham CS, Vesterlund M, Pham MT, Bramlett CS, et al. Comprehensive proteomic analysis of mesenchymal stem cell exosomes reveals modulation of angiogenesis via nuclear factor-kappab signaling. Stem Cells 2016;34:601-613.
25.    Liu WZ, He MJ, Long L, Mu DL, Xu MS, Xing X, et al. Interferon-γ and interleukin-4 detected in serum and saliva from patients with oral lichen planus. Int J Oral Sci 2014;6:22-26.
26.    Mozaffari HR, Molavi M, Lopez-Jornet P, Sadeghi M, Safaei M, Imani MM, et al. Salivary and serum interferon-gamma/interleukin-4 ratio in oral lichen planus patients: A systematic review and meta-analysis. Medicina (Kaunas) 2019;55:257-267.
27.    Bhowmick S, Ravindran R, Ali N. Il-4 contributes to failure, and colludes with Il-10 to exacerbate leishmania donovani infection following administration of a subcutaneous leishmanial antigen vaccine. BMC Microbiol 2014;14:8-20.
28.    Gurunathan S, Klinman DM, Seder RA. DNA vaccines: Immunology, application, and optimization. Annu Rev Immunol 2000;18:927-974.
29.    Yokoyama M, Zhang J, Whitton JL. DNA immunization: Effects of vehicle and route of administration on the induction of protective antiviral immunity. FEMS Immunol Med Microbiol 1996;14:221-230.
30.    Teimourpour R, peeridogaheh H, Teimourpour A, Arzanlou M, Meshkat Z. A study on the immune response induced by a DNA vaccine encoding mtb32c-hbha antigen of Mycobacterium tuberculosis. Iran J Basic Med Sci 2017;20:1119-1124.
31.    Feng CG, Palendira U, Demangel C, Spratt JM, Malin AS, Britton WJ. Priming by DNA immunization augments protective efficacy of mycobacterium bovis bacille calmette-guerin against tuberculosis. Infect Immun 2001;69:4174-4176.
32.    Skeiky YA, Alderson MR, Ovendale PJ, Guderian JA, Brandt L, Dillon DC, et al. Differential immune responses and protective efficacy induced by components of a tuberculosis polyprotein vaccine, mtb72f, delivered as naked DNA or recombinant protein. J Immunol 2004;172:7618-7628.
33.    Spertini F, Audran R, Lurati F, Ofori-Anyinam O, Zysset F, Vandepapeliere P, et al. The candidate tuberculosis vaccine mtb72f/as02 in ppd positive adults: A randomized controlled phase i/ii study. Tuberculosis (Edinb) 2013;93:179-188.
34.    Brandt L, Skeiky YA, Alderson MR, Lobet Y, Dalemans W, Turner OC, et al. The protective effect of the mycobacterium bovis BCG vaccine is increased by coadministration with the Mycobacterium tuberculosis 72-kilodalton fusion polyprotein Mtb72f in M. Tuberculosis-infected guinea pigs. Infect Immun 2004;72:6622-6632.
35.    Bruffaerts N, Huygen K, Romano M. DNA vaccines against tuberculosis. Expert Opin Biol Ther 2014;14:1801-1813.
36.    Meshkat Z, Teimourpour A, Rashidian S, Arzanlou M, Teimourpour R. Immunogenicity of a DNA vaccine encoding ag85a-tb10.4 antigens from Mycobacterium tuberculosis. Iran J Immunol 2016;13:289-295.
37.    Sali M, Clarizio S, Pusceddu C, Zumbo A, Pecorini G, Rocca S, et al. Evaluation of the anti-tuberculosis activity generated by different multigene DNA vaccine constructs. Microbes Infect 2008;10:605-612.
38.    Bivas-Benita M, Lin MY, Bal SM, van Meijgaarden KE, Franken KL, Friggen AH, et al. Pulmonary delivery of DNA encoding Mycobacterium tuberculosis latency antigen rv1733c associated to plga-pei nanoparticles enhances t cell responses in a DNA prime/protein boost vaccination regimen in mice. Vaccine 2009;27:4010-4017.
39.    Lima KM, Santos SA, Lima VM, Coelho-Castelo AA, Rodrigues JM, Jr., Silva CL. Single dose of a vaccine based on DNA encoding mycobacterial hsp65 protein plus tdm-loaded plga microspheres protects mice against a virulent strain of Mycobacterium tuberculosis. Gene Ther 2003;10:678-685.
40.    Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Preat V. Plga-based nanoparticles: An overview of biomedical applications. J Control Release 2012;161:505-522.
41. Khademi F, Derakhshan M, Yousefi-Avarvand A, Tafaghodi M. Potential of polymeric particles as future vaccine delivery systems/adjuvants for parenteral and non-parenteral immunization against tuberculosis: A systematic review. Iran J Basic Med Sci 2018; 21: 116-123.
42.    Silva AL, Soema PC, Slütter B, Ossendorp F, Jiskoot W. Plga particulate delivery systems for subunit vaccines: Linking particle properties to immunogenicity. Hum Vaccin Immunother 2016;12:1056-1069.
43.    Gu D, Chen W, Mi Y, Gong X, Luo T, Bao L. The mycobacterium bovis bcg prime-rv0577 DNA boost vaccination induces a durable th1 immune response in mice. Acta Biochimica et Biophysica Sinica 2016;48:385-390.
44.    Li W, Li M, Deng G, Zhao L, Liu X, Wang Y. Prime-boost vaccination with bacillus calmette guerin and a recombinant adenovirus co-expressing cfp10, esat6, ag85a and ag85b of Mycobacterium tuberculosis induces robust antigen-specific immune responses in mice. Mol Med Rep 2015;12:3073-3080.
45.    McShane H, Pathan AA, Sander CR, Keating SM, Gilbert SC, Huygen K, et al. Recombinant modified vaccinia virus ankara expressing antigen 85a boosts bcg-primed and naturally acquired antimycobacterial immunity in humans. Nat Med 2004;10:1240-1244.
46. Khademi F, Yousefi-Avarvand A, Derakhshan M, Najafi A, Tafaghodi M. Enhancing immunogenicity of novel multistage subunit vaccine of Mycobacterium tuberculosis using PLGA:DDA hybrid nanoparticles and MPLA: Subcutaneous administration. Iran J Basic Med Sci 2019; 22:893-900.