Cardiac dysfunction is attenuated by ginkgolide B via reducing oxidative stress and fibrosis in diabetic rats

Document Type: Original Article

Authors

1 School of Medicine, Jiaxing University, Jiaxing, P.R. China

2 Department of Physiology, Wannan Medical College, Wuhu, P.R. China

3 Department of Pathophysiology, Wannan Medical College, Wuhu, P.R. China

Abstract

Objective(s): Diabetic cardiomyopathy is a leading factor of high morbidity and mortality in diabetic patients. Our previous results revealed that ginkgolide B alleviates endothelial dysfunction in diabetic rats. This study aimed to investigate the effect of ginkgolide B on cardiac dysfunction and its mechanism in diabetic rats.
Materials and Methods: Diabetes was induced in rats through the intraperitoneal injection of streptozotocin (STZ). Hemodynamics was monitored to assess cardiac function. Oxidative stress was examined by detecting levels of malondialdehyde (MDA) and superoxide dismutase (SOD) in serum, and expression of sirtuin (SIRT)1, heme oxygenase (HO)-1, and phosphorylated AMPK in the heart. Masson’s trichrome staining and expression of transforming growth factor (TGF)-β1, smooth muscle actin (α-SMA), and phosphorylated (p-) Smad2 and Smad3 were used to evaluate cardiac fibrosis. Inflammatory cytokine in serum and levels of p-PI3K, p-Akt, p-p38, and p-JNK in the heart were determined.
Results: Ginkgolide B significantly improved hemodynamics in diabetic rats. Compared with diabetic rats, treatment with ginkgolide B significantly decreased levels of inflammatory cytokines, improved oxidative stress via reducing MDA concentration, and elevating SOD activity in serum and increasing expression of SIRT1, HO-1, and p-AMPK. Further, ginkgolide B alleviated cardiac fibrosis by decreasing expression of TGF-β1, α-SMA, and p-Smad2 and p-Smad3. Meanwhile, ginkgolide B reduced Levels of p-P38, and p-JNK, and increased levels of p-PI3K and p-Akt.
Conclusion: The results suggested that ginkgolide B alleviated cardiac dysfunction by reducing oxidative stress and cardiac fibrosis.

Keywords


1. Trachanas K, Sideris S, Aggeli C, Poulidakis E, Gatzoulis K, Tousoulis D, Kallikazaros I. Diabetic cardiomyopathy: From pathophysiology to treatment. Hellenic J Cardiol 2014;55:411-421.
2. Falcao-Pires I, Leite-Moreira AF. Diabetic cardiomyopathy: Understanding the molecular and cellular basis to progress in diagnosis and treatment. Heart Fail Rev 2012;17:325-344.
3. Bugger H, Bode C. The vulnerable myocardium. Hamostaseologie 2015;35:17-24.
4. Huynh K, Bernardo BC, McMullen JR, Ritchie RH. Diabetic cardiomyopathy: Mechanisms and new treatment strategies targeting antioxidant signaling pathways. Pharmacol Ther 2014;142:375-415.
5. van Heerebeek L, Hamdani N, Handoko ML, Falcao-Pires I, Musters RJ, Kupreishvili K, et al. Diastolic stiffness of the failing diabetic heart: Importance of fibrosis, advanced glycation end products, and myocyte resting tension. Circulation 2008;117:43-51.
6. Adeghate E. Molecular and cellular basis of the aetiology and management of diabetic cardiomyopathy: A short review. Mol Cell Biochem 2004;261:187-191.
7. Ansley DM, Wang B. Oxidative stress and myocardial injury in the diabetic heart. J Pathol 2013;229:232-241.
8. Wilson AJ, Gill EK, Abudalo RA, Edgar KS, Watson CJ, Grieve DJ. Reactive oxygen species signalling in the diabetic heart: Emerging prospect for therapeutic targeting. Heart 2018;104:293-299.
9. Tang M, Zhang W, Lin H, Jiang H, Dai H, Zhang Y. High glucose promotes the production of collagen types i and iii by cardiac fibroblasts through a pathway dependent on extracellular-signal-regulated kinase 1/2. Mol Cell Biochem 2007;301:109-114.
10. Biernacka A, Dobaczewski M, Frangogiannis NG. Tgf-beta signaling in fibrosis. Growth Factors 2011;29:196-202.
11. Harris WT, Kelly DR, Zhou Y, Wang D, MacEwen M, Hagood JS, Clancy JP, Ambalavanan N, Sorscher EJ. Myofibroblast differentiation and enhanced tgf-b signaling in cystic fibrosis lung disease. PLoS One 2013;8:e70196.
12. Fernandez IE, Eickelberg O. The impact of tgf-beta on lung fibrosis: From targeting to biomarkers. Proc Am Thorac Soc 2012;9:111-116.
13. Zhan M, Kanwar YS. Hierarchy of molecules in tgf-beta1 signaling relevant to myofibroblast activation and renal fibrosis. Am J Physiol Renal Physiol 2014;307:F385-387.
14. Tsou PS, Haak AJ, Khanna D, Neubig RR. Cellular mechanisms of tissue fibrosis. 8. Current and future drug targets in fibrosis: Focus on rho gtpase-regulated gene transcription. Am J Physiol Cell Physiol 2014;307:C2-13.
15. Johnson LA, Rodansky ES, Haak AJ, Larsen SD, Neubig RR, Higgins PD. Novel rho/mrtf/srf inhibitors block matrix-stiffness and tgf-beta-induced fibrogenesis in human colonic myofibroblasts. Inflamm Bowel Dis 2014;20:154-165.
16. Zhou H, Li YJ, Wang M, Zhang LH, Guo BY, Zhao ZS, Meng FL, Deng YG, Wang RY. Involvement of rhoa/rock in myocardial fibrosis in a rat model of type 2 diabetes. Acta Pharmacol Sin 2011;32:999-1008.
17. Li CJ, Lv L, Li H, Yu DM. Cardiac fibrosis and dysfunction in experimental diabetic cardiomyopathy are ameliorated by alpha-lipoic acid. Cardiovasc Diabetol 2012;11:73-82.
18. Cho HJ, Nam KS. Inhibitory effect of ginkgolide b on platelet aggregation in a camp- and cgmp-dependent manner by activated mmp-9. J Biochem Mol Biol 2007;40:678-683.
19. Xia SH, Hu CX, Fang JM, Di Y, Zhao ZL, Liu LR. G[alpha]i2 and g[alpha]q expression change in pancreatic tissues and bn52021 effects in rats with severe acute pancreatitis. Pancreas 2008;37:170-175.
20. Wang GG, Chen QY, Li W, Lu XH, Zhao X. Ginkgolide b increases hydrogen sulfide and protects against endothelial dysfunction in diabetic rats. Croat Med J 2015;56:4-13.
21. Gu JH, Ge JB, Li M, Wu F, Zhang W, Qin ZH. Inhibition of nf-kappab activation is associated with anti-inflammatory and anti-apoptotic effects of ginkgolide b in a mouse model of cerebral ischemia/reperfusion injury. Eur J Pharm Sci 2012;47:652-660.
22. Chu X, Ci X, He J, Wei M, Yang X, Cao Q, et al. A novel anti-inflammatory role for ginkgolide b in asthma via inhibition of the erk/mapk signaling pathway. Molecules 2011;16:7634-7648.
23. Qin XF, Lu XJ, Ge JB, Xu HZ, Qin HD, Xu F. Ginkgolide b prevents cathepsin-mediated cell death following cerebral ischemia/reperfusion injury. Neuroreport 2014;25:267-273.
24. Wu X, Zhou C, Du F, Lu Y, Peng B, Chen L, Zhu L. Ginkgolide b preconditioning on astrocytes promotes neuronal survival in ischemic injury via up-regulating erythropoietin secretion. Neurochem Int 2013;62:157-164.
25. Zhang S, Chen B, Wu W, Bao L, Qi R. Ginkgolide b reduces inflammatory protein expression in oxidized low-density lipoprotein-stimulated human vascular endothelial cells. J Cardiovasc Pharmacol 2011;57:721-727.
26. Liu X, Zhao G, Yan Y, Bao L, Chen B, Qi R. Ginkgolide b reduces atherogenesis and vascular inflammation in apoe(-/-) mice. PLoS One 2012;7:e36237.
27. Tikoo K, Tripathi DN, Kabra DG, Sharma V, Gaikwad AB. Intermittent fasting prevents the progression of type i diabetic nephropathy in rats and changes the expression of sir2 and p53. FEBS Lett 2007;581:1071-1078.
28. Bertrand L, Horman S, Beauloye C, Vanoverschelde JL. Insulin signalling in the heart. Cardiovasc Res 2008;79:238-248.
29. Condorelli G, Drusco A, Stassi G, Bellacosa A, Roncarati R, Iaccarino G, et al. Akt induces enhanced myocardial contractility and cell size in vivo in transgenic mice. Proc Natl Acad Sci U S A 2002;99:12333-12338.
30. Abel ED, O’Shea KM, Ramasamy R. Insulin resistance: Metabolic mechanisms and consequences in the heart. Arterioscler Thromb Vasc Biol 2012;32:2068-2076.
31. Abraham NG, Kappas A. Pharmacological and clinical aspects of heme oxygenase. Pharmacol Rev 2008;60:79-127.
32. Sosnowska B, Mazidi M, Penson P, Gluba-Brzozka A, Rysz J, Banach M. The sirtuin family members sirt1, sirt3 and sirt6: Their role in vascular biology and atherogenesis. Atherosclerosis 2017;265:275-282.
33. Fazakerley DJ, Holman GD, Marley A, James DE, Stockli J, Coster AC. Kinetic evidence for unique regulation of glut4 trafficking by insulin and amp-activated protein kinase activators in l6 myotubes. J Biol Chem 2010;285:1653-1660.
34. Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H, Lerin C, Daussin F, et al. Resveratrol improves mitochondrial function and protects against metabolic disease by activating sirt1 and pgc-1alpha. Cell 2006;127:1109-1122.
35. Waldman M, Bellner L, Vanella L, Schragenheim J, Sodhi K, Singh SP, et al. Epoxyeicosatrienoic acids regulate adipocyte differentiation of mouse 3t3 cells, via pgc-1alpha activation, which is required for ho-1 expression and increased mitochondrial function. Stem Cells Dev 2016;25:1084-1094.
36. Issan Y, Hochhauser E, Kornowski R, Leshem-Lev D, Lev E, Sharoni R, et al. Endothelial progenitor cell function inversely correlates with long-term glucose control in diabetic patients: Association with the attenuation of the heme oxygenase-adiponectin axis. Can J Cardiol 2012;28:728-736.
37. Wang Y, Feng W, Xue W, Tan Y, Hein DW, Li XK, Cai L. Inactivation of gsk-3beta by metallothionein prevents diabetes-related changes in cardiac energy metabolism, inflammation, nitrosative damage, and remodeling. Diabetes 2009;58:1391-1402.
38. Khullar M, Al-Shudiefat AA, Ludke A, Binepal G, Singal PK. Oxidative stress: A key contributor to diabetic cardiomyopathy. Can J Physiol Pharmacol 2010;88:233-240.
39. Diamant M, Lamb HJ, Smit JW, de Roos A, Heine RJ. Diabetic cardiomyopathy in uncomplicated type 2 diabetes is associated with the metabolic syndrome and systemic inflammation. Diabetologia 2005;48:1669-1670.
40. Mano Y, Anzai T, Kaneko H, Nagatomo Y, Nagai T, Anzai A, et al. Overexpression of human c-reactive protein exacerbates left ventricular remodeling in diabetic cardiomyopathy. Circ J 2011;75:1717-1727.
41. Mariappan N, Elks CM, Sriramula S, Guggilam A, Liu Z, Borkhsenious O, Francis J. Nf-kappab-induced oxidative stress contributes to mitochondrial and cardiac dysfunction in type ii diabetes. Cardiovasc Res 2010;85:473-483.
42. Ishikawa F, Kaneko E, Sugimoto T, Ishijima T, Wakamatsu M, Yuasa A, et al. A mitochondrial thioredoxin-sensitive mechanism regulates tgf-beta-mediated gene expression associated with epithelial-mesenchymal transition. Biochem Biophys Res Commun 2014;443:821-827.
43. Psathakis K, Mermigkis D, Papatheodorou G, Loukides S, Panagou P, Polychronopoulos V, Siafakas NM, Bouros D. Exhaled markers of oxidative stress in idiopathic pulmonary fibrosis. Eur J Clin Invest 2006;36:362-367.
44. Churg A, Zhou S, Preobrazhenska O, Tai H, Wang R, Wright JL. Expression of profibrotic mediators in small airways versus parenchyma after cigarette smoke exposure. Am J Respir Cell Mol Biol 2009;40:268-276.
45. Schmierer B, Hill CS. Tgfbeta-smad signal transduction: Molecular specificity and functional flexibility. Nat Rev Mol Cell Biol 2007;8:970-982.
46. Koitabashi N, Danner T, Zaiman AL, Pinto YM, Rowell J, Mankowski J, et al. Pivotal role of cardiomyocyte tgf-beta signaling in the murine pathological response to sustained pressure overload. J Clin Invest 2011;121:2301-2312.
47. Hu B, Wu Z, Phan SH. Smad3 mediates transforming growth factor-beta-induced alpha-smooth muscle actin expression. Am J Respir Cell Mol Biol 2003;29:397-404.
48. Darby IA, Zakuan N, Billet F, Desmouliere A. The myofibroblast, a key cell in normal and pathological tissue repair. Cell Mol Life Sci 2016;73:1145-1157.
49. Deb A, Ubil E. Cardiac fibroblast in development and wound healing. J Mol Cell Cardiol 2014;70:47-55.
50. Asbun J, Villarreal FJ. The pathogenesis of myocardial fibrosis in the setting of diabetic cardiomyopathy. J Am Coll Cardiol 2006;47:693-700.
51. Bujak M, Ren G, Kweon HJ, Dobaczewski M, Reddy A, Taffet G, Wang XF, Frangogiannis NG. Essential role of smad3 in infarct healing and in the pathogenesis of cardiac remodeling. Circulation 2007;116:2127-2138.
52. Ti Y, Xie GL, Wang ZH, Bi XL, Ding WY, Wang J, et al. Trb3 gene silencing alleviates diabetic cardiomyopathy in a type 2 diabetic rat model. Diabetes 2011;60:2963-2974.
53. Medici D, Potenta S, Kalluri R. Transforming growth factor-beta2 promotes snail-mediated endothelial-mesenchymal transition through convergence of smad-dependent and smad-independent signalling. Biochem J 2011;437:515-520.
54. Rajesh M, Mukhopadhyay P, Batkai S, Patel V, Saito K, Matsumoto S, et al. Cannabidiol attenuates cardiac dysfunction, oxidative stress, fibrosis, and inflammatory and cell death signaling pathways in diabetic cardiomyopathy. J Am Coll Cardiol 2010;56:2115-2125.
55. Vayalil PK, Iles KE, Choi J, Yi AK, Postlethwait EM, Liu RM. Glutathione suppresses tgf-beta-induced pai-1 expression by inhibiting p38 and jnk mapk and the binding of ap-1, sp-1, and smad to the pai-1 promoter. Am J Physiol Lung Cell Mol Physiol 2007;293:L1281-1292.