Therapeutic effects of rosemary (Rosmarinus officinalis L.) and its active constituents on nervous system disorders

Document Type: Review Article

Authors

1 Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran

2 Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran

Abstract

Rosemary (Rosmarinus officinalis L.) is an evergreen bushy shrub which grows along the Mediterranean Sea, and sub-Himalayan areas. In folk medicine, it has been used as an antispasmodic, mild analgesic, to cure intercostal neuralgia, headaches, migraine, insomnia emotional upset, and depression. Different investigations have highlighted rosemary neuropharmacological properties as their main topics. Rosemary has significant antimicrobial, anti-inflammatory, anti-oxidant, anti-apoptotic, anti-tumorigenic, antinociceptive, and neuroprotective properties. Furthermore, it shows important clinical effects on mood, learning, memory, pain, anxiety, and sleep. The aim of the current work is to review the potential neuropharmacological effects of different rosemary extracts and its active constituents on nervous system disorders, their relevant mechanisms and its preclinical application to recall the therapeutic potential of this herb and more directions of future research projects. The data were gathered by searching the English articles in PubMed, Scopus, Google Scholar, and Web of Science. The keywords used as search terms were ‘Rosmarinus officinalis’, ‘rosemary’, ‘nervous system’, ‘depression’, ‘memory’, ‘Alzheimer’s disease’ ‘epilepsy’, ‘addiction’, ‘neuropathic pain’, and ‘disorders’. All kinds of related articles, abstracts and books were included. No time limitation was considered. Both in vitro and in vivo studies were subjected to this investigation. This review authenticates that rosemary has appeared as a worthy source for curing inflammation, analgesic, anti-anxiety, and memory boosting. It also arranges new perception for further investigations on isolated constituents, especially carnosic acid, rosmarinic acid, and essential oil to find exquisite therapeutics and support drug discovery with fewer side effects to help people suffering from nervous system disorders.

Keywords


1. Knupp K, Parsons J. Nervous system disorders. In: Feldman  HM,  editor. Developmental-behavioral pediatrics. 4th ed. Philadelphia: Saunders; 2009. p. 213-223.
2. Li JW, Vederas JC. Drug discovery and natural products: end of an era or an endless frontier? Science 2009; 325:161-165.
3. Boyd A, Bleakley C, Gill C, McDonough S, Hurley DA, Bell P, McVeigh JG, Hannon- Fletcher M. Herbal medicinal products or preparations for neuropathic pain and fibromyalgia. Cochrane Database Syst Rev 2013; 5: CD010528.
4. Garg G, Adams JD. Treatment of neuropathic pain with plant medicines. Chin J Integr Med 2012; 18:565-570.
5. Duke JA. Handbook of Medicinal Herbs. CRC Press, Florida. 2000. P. 630-632.
6. Heinrich M, Kufer J, Leonti M, Pardo-de-Santayana M. 2006. Ethnobotany and ethnopharmacology-interdisciplinary links with the historical sciences. J Ethnopharmacol 2006; 107:157-160.
7. Al-Sereiti MR, Abu-Amer KM, Sen P. Pharmacology of rosemary (Rosmarinus officinalis Linn.) and its therapeutic potentials. Indian J Exp Biol 1999; 37:124-130.
8. Beninca JP, Dalmarco JB, Pizzolatti MG, Frode TS. Analysis of the anti- inflammatory properties of Rosmarinus officinalis L. in mice. Food Chem 2011; 124:468–475.
9. Kayashima T, Matsubara K. Antiangiogenic effect of carnosic acid and carnosol, neuroprotective compounds in rosemary leaves. Biosci Biotechnol Biochem 2012; 76:115-119.
10. Bakirel T, Bakirel U, Keles OU, Ulgen SG, Yardibi H. In vivo assessment of antidiabetic and anti-oxidant activities of rosemary (Rosmarinus officinalis) in alloxan-diabetic rabbits. J Ethnopharmacol 2008; 116:64-73.
11. González-Trujano ME, Pena EI, Martinez AL, Moreno J, Guevara-Fefer P, Deciga- Campos M, et al. Evaluation of the antinociceptive effect of Rosmarinus officinalis L. using three different experimental models in rodents. J Ethnopharmacol 2007; 111:476-482.
12. Hou CW, Lin YT, Chen YL, Wang YH, Chou JL, Ping LY, et al. Neuroprotective effects of carnosic acid on neuronal cells under ischemic and hypoxic stress. Nutr Neurosci 2012; 15:257-263.
13. Hosseinzadeh H, Karimi G, Noubakht M. Effects of Rosmarinus officinalis L. aerial parts essential oil on intact memory and scopolamine-induced learning deficits in rats performing the Morris water maze task. AJMP 2004; 4:51-57.
14. Machado DG, Bettio LEB, Cunha MP, Capra JC, Dalmarco JB, Pizzolatti MG, et al. Antidepressant-like effect of the extract of Rosmarinus officinalis in mice: involvement of the monoaminergic system. Prog Neuropsychopharmacol Biol Psychiatry 2009; 33:642-650.
15. Sasaki K, El Omri A, Kondo S, Han J, Isoda H. Rosmarinus officinalis polyphenols produce antidepressant like effect through monoaminergic and cholinergic functions modulation. Behav Brain Res 2013; 238:86–94.
16. El-Naggar SA, Abdel-Farid IB, Germoush MO, Elgebaly HA, Alm-Eldeen AA. Efficacy of Rosmarinus officinalis leaves extract against cyclophosphamide-induced hepatotoxicity. Pharm Biol 2016; 1:1-10.
17. Aguilar F, Autrup H, Barlow S, Castle L, Crebelli R, Dekrant W, et al. Use of rosemary extracts as a16 food additive–scientific opinion of the panel on food additives, flavorings, processing aids and materials in contact with food. EFSA J 2008; 721:1–29.
18. Tal Friedman ND. The effect of rosmarinic acid
on immunological and neurological systems: a basic science and clinical review. JRM 2015; 4:50-60.
19. Wang QL, Li H, Li XX, Cui CY, Wang R, Yu NX, et al.  Acute and 30-day oral toxicity studies of administered carnosic acid. Food Chem Toxicol 2012; 50:4348-4355.
20. Okamura N, Haraguchi H, Hashimoto K, Yagi A. Flavonoidsin Rosmarinus officinalis leaves. Phytochemistry 1994 a; 37:1463-1466.
21. Zeng HH, Tu PF, Zhou K, Wang H, Wang BH, Lu JF. Anti-oxidant properties of phenolic diterpenes from Rosmarinus officinalis. Acta Pharmacol Sin 2001; 22:1094- 1098.
22. Hosseinzadeh H, Nourbakhsh M. Effect of Rosmarinus officinalis L. aerial parts extract on morphine withdrawal syndrome in mice. Phytother Res 2003; 17:938-941.
23. Okamura N, Fujimoto Y, Kuwabara S, Yagi A. High-performance liquid chromatographic determination of carnosic acid and carnosol in Rosmarinus officinalis and Salvia officinalis. J Chromatogr A 1994 b; 679:381-386.
24. Borras-Linares I, Stojanovic Z, Quirantes-Pine R, Arraez-Roman D, Svarc-Gajic J, Fernandez-Gutierrez A, et al. Rosmarinus officinalis leaves as a natural source of bioactive compounds. Int J Mol Sci 2014; 15:20585- 20606.
25. Jayanthy G, Subramanian S. Rosmarinic acid, a polyphenol, ameliorates hyperglycemia by regulating the key enzymes of carbohydrate metabolism in high fat diet—STZ induced experimental diabetes mellitus. Biomed Prev Nutr 2014; 4:431-437.
26. Lipina C, Hundal HS. Carnosic acid stimulates glucose uptake in skeletal muscle cells via a PME-1/PP2A/PKB signalling axis. Cell Signal 2014; 26:2343-2349.
27. Birtic S, Dussort P, Pierre FX, Bily AC, Roller M. Carnosic acid. Phytochemistry 2015; 115: 9–19.
28. Sedighi R, Zhao Y, Yerke A, Sang S. Preventive and protective properties of rosemary (Rosmarinus officinalis L.) in obesity and diabetes mellitus of metabolic disorders: a brief review. Curr Opin Food Sci 2015; 2:58-70.
29. Lepine JP, Briley M. The increasing burden of depression. Neuropsychiatr Dis Treat 2011; 7:3-7.
30. Nemeroff C. Recent advances in the neurobiology of depression. Psychopharmacol Bull. 2001; 36:6-23.
31. Gonul AS, Akdeniz F, Taneli F, Donat O, Eker C, Vahip S. Effect of treatment on serum brain–derived neurotrophic factor levels in depressed patients. Eur Arch Psychiatry Clin Neurosci 2005; 255:381-386.
32. Peng GJ, Tian JS, Gao XX, Zhou YZ, Qin XM. Research on the pathological mechanism and drug treatment mechanism of depression. Curr Neuropharmacol 2015; 13:514-523.
33. Machado DG, Cunha MP, Neis VB, Balen GO, Colla AR, Grando J, et al. Rosmarinus officinalis L. hydroalcoholic extract, similar to fluoxetine, reverses depressive-like behavior without altering learning deficit in olfactory bulbectomized mice. J Ethnopharmacol 2012 a; 143:158-169.
34. Machado DG, Neis VB, Balen GO, Colla A, Cunha MP, Dalmarco JB, et al.  Antidepressant-like effect of ursolic acid isolated from Rosmarinus officinalis L. in mice: evidence for the involvement of the dopaminergic system. Pharmacol Biochem Behav 2012 b; 103:204-211.
35. Machado DG, Cunha MP, Neis VB, Balen GO, Colla A, Bettio LE, et al. Antidepressant- like effects of fractions, essential oil, carnosol and betulinic acid isolated from Rosmarinus officinalis L. Food Chem 2013; 136:999-1005.
36. Fallarini S, Miglio G, Paoletti T, Minassi A, Amoruso A, Bardelli C, et al. Clovamide and rosmarinic acid induce neuroprotective effects in in vitro models of neuronal death. Br J Pharmacol 2009; 157:1072-1084.
37. Gemma C, Vila J, Bachstetter A, Bickford BC. Oxidative stress and the aging brain: brain from theory to prevention. In Brain Aging: Models, Methods, and Mechanisms [DR Riddle, editor]. Boca Raton, FL: CRC Press; 2007.
38. Wang X, Wang W, Li L, Perry G, Lee HG, Zhu X. Oxidative stress and mitochondrial dysfunction in Alzheimer’s disease. Biochim Biophys Acta 2014; 1842:1240- 1247.
39. Farr SA, Niehoff ML, Ceddia MA, Herrlinger KA, Lewis BJ, Feng S, et al. Effect of botanical extracts containing carnosic acid or rosmarinic acid on learning and memory in SAMP8 mice. Physiol Behav 2016; 15:328- 338.
40. Polgar L. The prolyl oligopeptidase family. Cell Mol Life Sci 2002; 59:349-362.
41. Park DH, Park SJ, Kim JM, Jung WY, Ryu JH. Subchronic administration of rosmarinic acid, a natural prolyl oligopeptidase inhibitor, enhances cognitive performances. Fitoterapia 2010; 81:644-648.
42. Song H, Xu L, Zhang R, Cao Z, Zhang H, Yang L, et al. Rosemary extract improves cognitive deficits in a rats model of repetitive mild traumatic brain injury associated with reduction of astrocytosis and neuronal degeneration in hippocampus. Neurosci Lett 2016; 27:95-101.
43. Moss M, Cook J, Wesnes K, Duckett P. Aromas of rosemary and lavender essential oils differentially affect cognition and mood in healthy adults. Int J Neurosci 2003; 113:15-38.
44. McCaffrey R, Thomas DJ, Kinzelman AO. The effects of lavender and rosemary essential oils on test-taking anxiety among graduate nursing students. Holist Nurs Pract 2009; 23:88-93.
45. Pengelly A, Snow J, Mills SY, Scholey A, Wesnes K, Butler LR. Short-Term Study on the effects of rosemary on cognitive function in an elderly population. J Med Food 2012; 15:10-17.
46. Balu DT, Lucki I. Adult hippocampal neurogenesis: regulation, functional implications, and contribution to disease pathology. Neurosci Biobehav Rev 2009; 33:232–252.
47. Candelario-Jalil E, Mhadu NH, Al-Dalain SM, Martinez G, Leon OS. Time course of oxidative damage in different brain regions following transient cerebral ischemia in gerbils. Neurosci Res 2001; 41:233–241.
48. Evans WJ. Vitamin E, vitamin C, and exercise. Am J Clin Nutr 2000; 72:647s–652s.
49. Rasoolijazi H, Mehdizadeh M, Soleimani M, Nikbakhte F, Eslami Farsani M, Ababzadeh S. The effect of rosemary extract on spatial memory, learning and anti-oxidant enzymes activities in the hippocampus of middle-aged rats. Med J Islam Repub Iran 2015; 29:225-235.
50. Terry RD, Masliah E, Salmon DP, Butters N, DeTeresa R, Hill R, et al. Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 1991; 30:572–580.
51. Smith CD, Carney JM, Starke-Reed PE, Oliver CN, Stadtman ER, Floyd RA, et al.  Excess brain protein oxidation and enzyme dysfunction in normal aging and in Alzheimer disease. Proc Natl Acad Sci U S A 1991; 88:10540–10543.
52. Cho DH, Nakamura T, Fang J, Cieplak P, Godzik A, Gu Z, Lipton SA. S- nitrosylation of Drp1 mediates beta-amyloid-related mitochondrial fission and neuronal injury. Science 2009; 324:102-105.
53. Satoh T, McKercher SR, Lipton SA. Nrf2/ARE-mediated anti-oxidant actions of proelectrophilic drugs. Free Radic Biol Med 2013; 65:645–657.
54. Zhang D, Lee B, Nutter A, Song P, Dolatabadi N, Parker J, et al. Protection from cyanideinduced brain injury by the Nrf2 transcriptional activator carnosic acid. J Neurochem 2015; 133:898-908.
55. Lipton SA, Rezaie T, Nutter A, Lopez KM, Parker J, Kosaka K, et al. Therapeutic advantage of pro-electrophilic drugs to activate the Nrf2/ARE pathway in Alzheimer’s disease models. Cell Death Dis 2016; 7: e2499.
56. Kwon SH, Lee HK, Kim JA, Hong SI, Kim HC, Jo TH, et al. Neuroprotective effects of chlorogenic acid on scopolamine- induced amnesia via anti-acetylcholinesterase and anti-oxidative activities in mice. Eur J Pharmacol 2010; 649:210-217.
57. Francis PT, Palmer AM, Snape M. The cholinergic hypothesis of Alzheimer’s disease: a review of progress. J Neurol Neurosurg Psychiatry 1999; 66:137–147.
58. Darvesh S, Hopkins D, Geula C. Neurobiology of butyrylcholinesterase. Nat Rev Neurosci 2003; 4:131-138.
59. Ciro A, Park J, Burkhard G, Yan N, Geula C. Biochemical differentiation of cholinesterases from normal and Alzheimer’s disease cortex. Curr Alzheimer Res 2012; 9:138-143.
60. Ozarowski M, Mikolajczak PL, Bogacz A, Gryszczynska A, Kujawska M, Jodynis-Liebert J, et al. Rosmarinus officinalis L. leaf extract improves memory impairment and affects acetylcholinesterase and butyrylcholinesterase activities in rat brain. Fitoterapia 2013; 91:261-271.
61. Jimbo D, Kimura Y, Taniguchi M, Inoue M, Urakami K. Effect of aromatherapy on patients with Alzheimer’s disease. Psychogeriatrics 2009; 9:173-179.
62. Kwan P, Brodie MJ. Refractory epilepsy: mechanisms and solutions. Expert Rev Neurother 2006; 6:397-406.
63. Lewerenz J, Maher P. Chronic glutamate toxicity in neurodegenerative diseases – What is the evidence? Front Neurosci 2015; 16;9:469.
64. Ribeiro FM, Vieira LB, Pires RG, Olmo RP, Ferguson SS. Metabotropic glutamate receptors and neurodegenerative diseases. Pharmacol Res 2017; 115:179-191.
65. Wang Q, Yu S, Simonyi A, Sun GY, Sun AY. Kainic acid-mediated excitotoxicity as a model for neurodegeneration. Mol Neurobiol 2005; 31:3-16.
66. Doolaege EH, Vossen E, Raes K, De Meulenaer B, Verhé R, Paelinck H, et al. Effect of rosemary extract dose on lipid oxidation, colour stability and anti-oxidant concentrations, in reduced nitrite liver pâtés. Meat Sci 2012; 90:925–931.
67. Naderali E, Nikbakht F, Ofogh SN, Rasoolijazi H. The role of rosemary extract in degeneration of hippocampal neurons induced by kainic acid in the rat: A behavioral and histochemical approach. J Integr Neurosci 2018; 17:31-43.
68. Ermak G, Davies KJ. Calcium and oxidative stress: from cell signaling to cell death. Mol Immunol 2002; 38:713-721.
69. Chan SL, Liu D, Kyriazis GA, Bagsiyao P, Ouyang X, Mattson MP. Mitochondrial uncoupling protein-4 regulates calcium homeostasis and sensitivity to store depletion-induced apoptosis in neural cells. J Biol Chem 2006; 281:37391-37403.
70. Perez-Reyes E. Molecular physiology of low-voltage-activated T-type calcium channels. Physiol Rev 2003; 83:117-161.
71. Catterall WA, Goldin AL, Waxman SG. International Union of Pharmacology. XLVII. Nomenclature and structure-function relationships of voltage-gated sodium channels. Pharmacol Rev 2005; 57:397-409.
72. El Alaoui C, Chemin J, Fechtali T, Lory P. Modulation of T-type Ca2+ channels by lavender and rosemary extracts. PLoS One 2017; 12:e0186864.
73. Ali R, Chiamwongpaet S, Mravcík V, Poznyak V, Uchtenhagen A. WHO collaborative study on substitution therapy of opioid dependence and HIV/AIDS; 2005.
74. Sadock BJ, Kaplan HI, Sadock VA. Kaplan & Sadock’s synopsis of psychiatry: behavioral sciences/clinical psychiatry. Philadelphia, PA: Lippincott Williams & Wilkins; 2007.
75. Hosseinzadeh H, Ramezani M, Shahsavand S. Effect of Rosmarinus officinalis L. aerial parts extract and fractions on morphine withdrawal syndrome in mice. J Med Plants 2006; 4:27-35.
76. Solhi H, Salehi B, Alimoradian A, Pazouki S, Taghizadeh M, Saleh AM, et al. Beneficial effects of Rosmarinus Officinalis for treatment of opium withdrawal syndrome during addiction treatment programs: A Clinical Trial. Addict Health 2013; 5:90–94.
77. Alnamer R, Alaoui K, Bouidida EH, Benjouad A, Cherrah Y. Psychostimulant activity of Rosmarinus officinalis essential oils. J Nat Prod 2012; 5:83-92.
78. Treede RD, Jensen TS, Campbell JN, Cruccu G, Dostrovsky JO, Griffin JW, et al.  Neuropathic pain redefinition and a grading system for clinical and research purposes. Neurology 2008; 70:1630-1635.
79. Sacerdote P, Franchi S, Moretti S, Castelli M, Procacci P, Magnaghi V, et al. Cytokine modulation is necessary for efficacious treatment of experimental neuropathic pain. J Neuroimmune Pharmacol 2013; 8:202-211.
80. Valsecchi AE, Franchi S, Panerai AE, Rossi A, Sacerdote P, Colleoni M. The soy isoflavone genistein reverses oxidative and inflammatory state neuropathic pain, neurotrophic and vasculature deficits in diabetes mouse model. Eur J Pharmacol 2011; 650:694- 702.
81. Gao YJ, Ji RR. Targeting astrocyte signaling for chronic pain. Neurotherapeutics 2010; 7:482-493.
82. Hingtgen CM, Waite KJ, Vasko M.R. Prostaglandins facilitate peptide release from rat sensory neurons by activating the adenosine 3’ 5’-cyclic monophosphate transduction cascade. J Neurosci 1995; 15:5411-5419.
83. Page-McCaw A, Ewald AJ, Werb Z. Matrix metalloproteinases and the regulation of tissue remodeling. Nat Rev Mol Cell Biol 2007; 8:221-233.
84. Ji RR, Xu ZZ, Wang X, Lo EH. Matrix metalloprotease regulation of neuropathic pain. Trends Pharmacol Sci 2009; 30:336-340.
85. Emami F, Ali-Beig H, Farahbakhsh S, Mojabi N, Rastegar-Moghadam B, Arbabian S, et al. Hydroalcoholic extract of rosemary (Rosmarinus officinalis L.) and its constituent carnosol inhibit formalin-induced pain and inflammation in mice. Pak J Biol Sci 2013; 16:309-316.
86. Martínez AL, González-Trujano ME, Chávez M, Pellicer F. Antinociceptive effectiveness of triterpenes from rosemary in visceral nociception. J Ethnopharmacol 2012; 142:28-34
87. Ghasemzadeh MR, Amin B, Mehri S, Mirnajafi-Zadeh SJ, Hosseinzadeh H. Effect of alcoholic extract of aerial parts of Rosmarinus officinalis L. on pain, inflammation and apoptosis induced by chronic constriction injury (CCI) model of neuropathic pain in rats. J Ethnopharmacol 2016; 24:117-130.
88. Di Cesare Mannelli L, Micheli L, Maresca M, Cravotto G, Bellumori M, Innocenti M, et al. Anti-neuropathic effects of Rosmarinus officinalis L. terpenoid fraction: relevance of nicotinic receptors. Sci Rep 2016; 7:6:34832.
89. Siniscalco D, Fuccio C, Giordano C, Ferraraccio F, Palazzo E, Luongo L, Rossi F, et al. Role of reactive oxygen species and spinal cord apoptotic genes in the development of neuropathic pain. Pharmacol Res 2007; 55:158-166.
90. Woolf CJ, Shortland P, Coggeshall RE. Peripheral nerve injury triggers central sprouting of myelinated afferents. Nature 1992; 355:75-78.
91. Milligan ED, Watkins LR. Pathological and protective roles of glia in chronic pain. Nat Rev Neurosci 2009; 10:23-36.
92. Ghasemzadeh Rahbardar M, Amin B, Mehri S, Mirnajafi-Zadeh SJ, Hosseinzadeh H. Anti-inflammatory effects of ethanolic extract of Rosmarinus officinalis L. and rosmarinic acid in a rat model of neuropathic pain. Biomed Pharmacother 2017; 86:441-449.
93. Rahbardar MG, Amin B, Mehri S, Mirnajafi-Zadeh SJ, Hosseinzadeh H. Rosmarinic acid attenuates development and existing pain in a rat model of neuropathic pain: An evidence of anti-oxidative and anti-inflammatory effects. Phytomedicine 2018; 1:59-67.
94. Raskovic A, Milanovic I, Pavlovic N, Milijasevic B, Ubavic M, Mikov M. Analgesic effects of rosemary essential oil and its interactions with codeine and paracetamol in mice. Eur Rev Med Pharmacol Sci 2015; 19:165-172.
95. Takaki I, Bersani-Amado LE, Vendruscolo A, Sartoretto SM, Diniz SP, Bersani-Amado CA, et al. Anti-inflammatory and antinociceptive effects of Rosmarinus officinalis L. essential oil in experimental animal models. J Med Food 2008; 11:741-746.
96. Akbari J, Saeedi M, Farzin D, Morteza-Semnani K, Esmaili Z. Transdermal absorption enhancing effect of the essential oil of Rosmarinus officinalis on percutaneous absorption of Na diclofenac from topical gel. Pharm Biol 2015; 53:1442-1447.
97. Abdelhalim A, Karim N, Chebib M, Aburjai T, Khan I, Johnston GA, et al. Antidepressant, anxiolytic and antinociceptive activities of constituents from Rosmarinus Officinalis. J Pharm Pharm Sci 2015; 18:448-459.
98. Masajtis Zagajewska A, Pietrasik P, Krawczyk J, Krakowska M, Jarzebski T, Pietrasiewicz B, et al. Similar prevalence but different characteristics of pain in kidney transplant recipients and chronic hemodialysis patients. Clin Transplant 2011; 25:E144-151.
99. Gamondi C, Galli N, Schonholzer C, Marone C, Zwahlen H, Gabutti L, et al. Frequency and severity of pain and symptom distress among patients with chronic kidney disease receiving dialysis. Swiss Med Wkly 2013; 22:143:w13750.
100. Davison SN, Jhangri GS. Impact of pain and symptom burden on the health‑related quality of life of hemodialysis patients. J Pain Symptom Manage 2010; 39:477- 485.
101. Keshavarzian S, Shahgholian N. Comparison of the effect of topical application of rosemary and menthol for musculoskeletal pain in hemodialysis patients. Iran J Nurs Midwifery Res 2017; 22:436-441.
102. Edwards JL, Vincent AM, Cheng HT, Feldman EL. Diabetic neuropathy: mechanisms to management. Pharmacol Ther 2008; 120:1-34.
103. Shima T, Jesmin S, Matsui T, Soya M, Soya H. Differential effects of type 2 diabetes on brain glycometabolism in rats: focus on glycogen and monocarboxylate transporter 2. J Physiol Sci 2018; 68:69-75.
104. Sifuentes-Franco S, Pacheco-Moisés FP, Rodríguez-Carrizalez AD, Miranda-Díaz AG. The role of oxidative stress, Mitochondrial Function, and Autophagy in Diabetic Polyneuropathy. J Diabetes Res 2017; 1:1-15.
105. Russell JW, Golovoy D, Vincent AM, Mahendru P, Olzmann JA, Mentzer A, et al. High glucoseinduced oxidative stress and mitochondrial dysfunction in neurons. FASEB J 2002; 16:1738-1748.
106. Rasoulian B, Hajializadeh Z, Esmaeili-Mahani S, Rashidipour M, Fatemi I, Kaeidi A. Neuroprotective and antinociceptive effects of rosemary (Rosmarinus officinalis L.) extract in rats with painful diabetic neuropathy. J Physiol Sci 2018; 12:1-8.
107. Hassani FV, Shirani K, Hosseinzadeh H. Rosemary (Rosmarinus officinalis) as a potential therapeutic plant in metabolic syndrome: a review. Naunyn Schmiedebergs Arch Pharmacol 2016; 389:931-949.
108. da Silveira e Sá R. Cancer and aromatherapy: A view of how the use of essential oils applies to palliative care. In: de Sousa D. (eds) Bioactive Essential Oils and Cancer. Springer, Cham. 2015. p. 251-266.
109. Buckle J. Clinical aromatherapy: Essential oils in practice. 3rd ed. St. Louis, MO: Elsevier Health Sciences; 2016. p.15-36.
110. Gok Metin Z, Arikan Donmez A, Izgu N, Ozdemir L, Arslan IE. Aromatherapy massage for neuropathic pain and quality of life in diabetic patients. J Nurs Scholarsh 2017; 49:379-388.
111. Chovatiya R, Medzhitov R. Stress, inflammation, and defense of homeostasis. Mol Cell 2014; 54:281–288.
112. Uchoa ET, Aguilera G, Herman JP, Fiedler JL, Deak T, de Sousa MB. Novel aspects of glucocorticoid actions. J Neuroendocrinol 2014; 26:557-572.
113. Mark GP, Rada PV, Shors TJ. Inescapable stress enhances extracellular acetylcholine in the rat hippocampus and prefrontal cortex but not the nucleus accumbens or amygdala. Neuroscience 1996; 74:767–774.
114. Kaufer D, Friedman A, Seidman S, Soreq H. Acute stress facilitates long-lasting changes in cholinergic gene expression. Nature 1998; 393:373–377.
115. Akrout A, Mighri H, Krid M, Thabet F, Turki H, El-Jani H, et al. Chemical composition and anti-oxidant activity of aqueous extracts of some wild medicinal plants in southern Tunisia. LSMR 2012; 2:1–4.
116. Kondo S, mri AL, Han J, Isoda H. Antidepressant-like effects of rosmarinic acid through mitogen-activated protein kinase phosphatase-1 and brain derived neurotrophic factor modulation. J Funct Foods 2015; 14:758–766.
117. Komiya M, Takeuchi T, Harada E. Lemon oil vapor causes an anti-stress effect via modulating the 5-HT and DA activities in mice. Behav Brain Res 2006; 172:240-249.
118. Takahashi M, Yoshino A, Yamanaka A, Asanuma C, Satou T, Hayashi S, et al.  Effects of inhaled lavender essential oil on stress-loaded animals: changes in anxiety-related behavior and expression levels of selected mRNAs and proteins. Nat Prod Commun 2012; 7:1539-1544.
119. Shaw D, Annett JM, Doherty B, Leslie JC. Anxiolytic effects of lavender oil inhalation on open-field behaviour in rats. Phytomedicine 2007; 14:613-620.
120. Galdino PM, Nascimento MVM, Florentino IF, Campos Lino R, Fajemiroye JO, Abdallah Chaibub B, et al. The anxiolytic-like effect of an essential oil derived from a. St. Hil. Leaves and its major component, β-caryophyllene, in male mice. Prog Neuropsychopharmacol Biol Psychiatry. 2012; 38:276-284.
121. Silenieks LB, Koch E, Higgins GA. Silexan, an essential oil from flowers of Lavandula angustifolia, is not recognized as benzodiazepine-like in rats trained to discriminate a diazepam cue. Phytomedicine 2013; 20:172-177.
122. Buchbauer G, Jirovetz L, Jäger W, Dietrich H, Plank C, Karamat E. Aromatherapy: evidence for sedative effects of the essential oil of lavender after inhalation. Z Naturforsch C J Biosci 1991; 46:1067-1072.
123. Villareal MO, Ikeya A, Sasaki K, Arfa AB, Neffati M, Isoda H. Anti-stress and neuronal cell differentiation induction effects of Rosmarinus officinalis L. essential oil. BMC Complement Altern Med 2017; 17: 549.
124. Omri AL, Han J, Yamada P, Kawada K, Abdrabbah MB, Isoda H. Rosmarinus officinalis polyphenols activate cholinergic activities in PC12 cells through phosphorylation of ERK1/2. J Ethnopharmacol 2010; 131:451-458
125. del Bano MJ, Lorente J, Castillo J, Benavente-García O, del Río JA, Ortuño A, et al. Phenolic diterpenes, flavones, and rosmarinic acid distribution during the development of leaves, flowers, stems, and roots of Rosmarinus officinalis. anti-oxidant activity. J Agric Food Chem 2003; 51:4247-4253.
126. Ferlemi AV, Katsikoudi A, Kontogianni VG, Kellici TF, Iatrou G, Lamari FN, et al.  Rosemary tea consumption results to anxiolytic- and anti- depressantlike behavior of adult male mice and inhibits all cerebral area and liver cholinesterase activity; phytochemical investigation and in silico studies. Chem Biol Interact 2015; 237:47-57.
127. Takeda H, Tsuji M, Miyamoto J, Matsumiya T. Rosmarinic acid and caffeic acid reduce the defensive freezing behavior of mice exposed to conditioned fear stress. Psychopharmacology (Berl) 2002; 64:233-235.
128. Pereira P, Tysca D, Oliveira P, da Silva Brum LF, Picada JN, Ardenghi P. Neurobehavioral and genotoxic aspects of rosmarinic acid. Pharmacol Res 2005; 52:199- 203.
129. Nematolahi P, Mehrabani M, Karami-Mohajeri S, Dabaghzadeh F. Effects of Rosmarinus officinalis L. on memory performance, anxiety, depression, and sleep quality in university students: A randomized clinical trial. Complement Ther Clin Pract 2018; 30:24-28.
130. Hwang O. Role of oxidative stress in Parkinson’s disease. Exp Neurobiol 2013; 22:11-17.
131. Ham A, Kim DW, Kim KH, Lee SJ, Oh KB, Shin J, et al. Reynosin protects against neuronal toxicity in dopamine-induced SH-SY5Y cells and 6- hydroxydopamine-lesioned rats as models of Parkinson’s disease: reciprocal up-regulation of E6-AP and down-regulation of alpha-synuclein. Brain Res 2013; 1524:54–61.
132. Kim SJ, Kim JS, Cho HS, Lee HJ, Kim SY, Kim S, et al. Carnosol, a component of rosemary (Rosmarinus officinalis L.) protects nigral dopaminergic neuronal cells. Neuroreport 2006; 17:1729-1733.
133. Wu CR, Tsai CW, Chang SW, Lin CY, Huang LC, Tsai CW.  Carnosic acid protects against 6-hydroxydopamine-induced neurotoxicity in in vivo and in vitro model of Parkinson’s disease: Involvement of anti-oxidative enzymes induction. Chem Biol Interact 2015; 225:40-46.