Left ventricular phosphorylation patterns of Akt and ERK1/2 after triiodothyronine intracoronary perfusion in isolated hearts and short-term in vivo treatment in Wistar rats

Document Type: Original Article

Authors

1 Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México

2 Departamento de Biología Celular, Instituto Nacional de Perinatología, Ciudad de México, México

3 Departamento de Inmuno-Bioquímica, Instituto Nacional de Perinatología, Ciudad de México, México

Abstract

Objective(s): To determine the effects of triiodothyronine (T3) intracoronary perfusion in isolated hearts and short-term administration in rats on the left ventricular (LV) phosphorylation patterns of Akt and ERK1/2.
Materials and Methods: Cardiodynamic and hemodynamic parameters were evaluated in Langendorff–perfused hearts. Left ventricles were used for histomorphometric and Western blot analyses. Short-term hyperthyroidism was established by T3 (500 μg.kg-1.d-1; subcutaneous injection) for 1 (T31d), 3 (T33d), and 10 (T310d) days.
Results: Isolated hearts receiving T3 perfusion did not modify LV developed pressure, +dP/dtmax, -dP/dtmin, heart rate, and coronary perfusion pressure compared with vehicle-perfused hearts. P-ERK1/2 and p-Akt levels in LV tissues after 5, 15, or 60 min of T3 or vehicle perfusion were similar. Compared with their time-matched controls, isolated hearts of T33d and T310d rats exhibited LV hypertrophy and increased absolute values of +dP/dtmax and -dP/dtmin (i.e., positive inotropic and lusitropic effects). P-ERK1/2 decreased in LV tissues of T31d and T310d but not in those of T33d rats, and p-Akt levels augmented in left ventricles of T33d and stayed unaltered in those of T31d and T310d rats.
Conclusion: T3 intracoronary perfusion did not alter cardiodynamics and hemodynamics nor influence the activation of Akt and ERK of normal hearts. Accordingly, the rapid non-genomic effects of T3 were not evident. Short-term T3 treatment provoked cardiac hypertrophy coincidental with increased LV function and associated with transient Akt activation and cyclic ERK1/2 inhibition; which implies activation of  physiological hypertrophy signaling and deactivation of  pathological hypertrophy signaling, respectively.

Keywords


1. Fazio S, Palmieri EA, Lombardi G, Biondi B. Effects of thyroid hormone on the cardiovascular system. Recent Prog Horm Res 2004; 59: 31-50.
2. Kahaly GJ, Dillmann WH. Thyroid hormone action in the heart. Endocr Rev 2005; 26: 704-728.
3. Ojamaa K. Signaling mechanisms in thyroid hormone-induced cardiac hypertrophy. Vascul Pharmacol 2010; 52: 113-119.
4. Luidens MK, Mousa SA, Davis FB, Lin HY, Davis PJ. Thyroid hormone and angiogenesis. Vascul Pharmacol 2010; 52: 142-145.
5. Davis PJ, Leonard JL, Davis FB. Mechanisms of nongenomic actions of thyroid hormone. Front Neuroendocrinol 2008; 29: 211-218.
6. Cheng SY, Leonard JL, Davis PJ. Molecular aspects of thyroid hormone actions. Endocr Rev 2010; 31: 139-170.
7. Vella KR, Hollenberg AN. The actions of thyroid hormone signaling in the nucleus. Mol Cell Endocrinol 2017; 458:127-135.
8. Dillmann W. Cardiac hypertrophy and thyroid hormone signaling. Heart Fail Rev 2010; 15: 125-132.
9. Pingitore A, Nicolini G, Kusmic C, Iervasi G, Grigolini P, Forini F. Cardioprotection and thyroid hormones. Heart Fail Rev 2016; 21: 391-399.
10. Gerdes AM, Ojamaa K. Thyroid Hormone and Cardioprotection. Compr Physiol 2016; 6: 1199-1219.
11. Elnakish MT, Ahmed AA, Mohler PJ, Janssen PM. Role of oxidative stress in thyroid hormone-induced cardiomyocyte hypertrophy and associated cardiac dysfunction: An undisclosed story. Oxid Med Cell Longev 2015; 2015: 854265.
12. Kuzman JA, O’Connell TD, Gerdes AM. Rapamycin prevents thyroid hormone-induced cardiac hypertrophy. Endocrinology 2007; 148: 3477-3484.
13. Suarez J, Scott BT, Suarez-Ramirez J, Chavira CV, Dillmann WH. Thyroid hormone inhibits ERK phosphorylation in pressure overload-induced hypertrophied mouse hearts through a receptor-mediated mechanism. Am J Physiol Cell Physiol 2010; 299: C1524-1529.
14. Pantos C, Mourouzis I, Saranteas T, Clavé G, Ligeret H, Noack-Fraissignes P, et al. Thyroid hormone improves postischaemic recovery of function while limiting apoptosis: a new therapeutic approach to support hemodynamics in the setting of ischaemia–reperfusion? Basic Res Cardiol 2009; 104: 69–77.
15. Honda H, Iwata T, Mochizuki T, Kogo H. Changes in vascular reactivity induced by acute hyperthyroidism in isolated rat aortae. Gen Pharmacol 2000; 34: 429-434.
16. Weltman NY, Ojamaa K, Savinova OV, Chen YF, Schlenker EH, Zucchi R, et al. Restoration of cardiac tissue thyroid hormone status in experimental hypothyroidism: a dose-response study in female rats. Endocrinology 2013; 154: 2542-2552.
17. Tavares FM, da Silva IB, Gomes DA, Barreto-Chaves ML. Angiotensin II type 2 receptor (AT2R) is associated with increased tolerance of the hyperthyroid heart to ischemia-reperfusion. Cardiovasc Drugs Ther 2013; 27: 393-402.
18. Ulm S, Liu W, Zi M, Tsui H, Chowdhury SK, Endo S, et al. Targeted deletion of ERK2 in cardiomyocytes attenuates hypertrophic response but provokes pathological stress induced cardiac dysfunction. J Mol Cell Cardiol 2014; 72: 104-116.
19. Skrzypiec-Spring M, Grotthus B, Szelag A, Schulz R. Isolated heart perfusion according to Langendorff-Still viable in the new millennium. J Pharmacol Toxicol Methods 2007; 55:113-126.
20. Bell RM, Mocanu MM, Yellon DM. Retrograde heart perfusion: the Langendorff technique of isolated heart perfusion. J Mol Cell Cardiol 2011; 50: 940-950.
21. Liao R, Podesser BK, Lim CC. The continuing evolution of the Langendorff and ejecting murine heart: new advances in cardiac phenotyping. Am J Physiol Heart Circ Physiol 2012; 303, H156–H167.
22. López RM, Castillo MC, López JS, Guevara G, López P, Castillo EF. Activation of upregulated angiotensin II type 2 receptors decreases carotid pulse pressure in rats with suprarenal abdominal aortic coarctation. Clin Exp Hypertens 2015; 37: 271-279.
23. Mullur R, Liu YY, Brent GA. Thyroid hormone regulation of metabolism. Physiol Rev 2014; 94: 355-382.
24. Segal J, Masalha S, Schwalb H, Merin G, Borman JB, Uretzky G. Acute effect of thyroid hormone in the rat heart: role of calcium. J Endocrinol 1996; 149: 73-80.
25. Yoneda K, Takasu N, Higa S, Oshiro C, Oshiro Y, Shimabukuro M, et al.  Direct effects of thyroid hormones on rat coronary artery: nongenomic effects of triiodothyronine and thyroxine. Thyroid 1998; 8: 609-613.
26. Klein I, Ojamaa K. Thyroid hormone and the cardiovascular system. N Engl J Med 2001; 344: 501-509.
27. Iordanidou A, Hadzopoulou-Cladaras M, Lazou A. Non-genomic effects of thyroid hormone in adult cardiac myocytes: relevance to gene expression and cell growth. Mol Cell Biochem 2010; 340: 291-300.
28. Pantos C, Xinaris C, Mourouzis I, Malliopoulou V, Kardami E, Cokkinos DV. Thyroid hormone changes cardiomyocyte shape and geometry via ERK signaling pathway: potential therapeutic implications in reversing cardiac remodeling? Mol Cell Biochem 2007; 297: 65-72.
29. Kenessey A, Ojamaa K. Thyroid hormone stimulates protein synthesis in the cardiomyocyte by activating the Akt-mTOR and p70S6K pathways. J Biol Chem 2006; 281: 20666-20672.
30. Dorn GW II. The fuzzy logic of physiological cardiac hypertrophy. Hypertension 2007; 49: 962-970.
31. Kehat I, Molkentin JD. Extracellular signal-regulated kinase 1/2 (ERK1/2) signaling in cardiac hypertrophy. Ann N Y Acad Sci 2010; 1188: 96-102.
32. McMullen JR, Jennings GL. Differences between pathological and physiological cardiac hypertrophy: novel therapeutic strategies to treat heart failure. Clin Exp Pharmacol Physiol 2007; 34: 255-262.
33. Bernardo BC, Weeks KL, Pretorius L, McMullen JR. Molecular distinction between physiological and pathological cardiac hypertrophy: experimental findings and therapeutic strategies. Pharmacol Ther 2010; 128: 191-227.
34. Lorenz K, Schmitt JP, Vidal M, Lohse MJ. Cardiac hypertrophy: targeting Raf/MEK/ERK1/2-signaling. Int J Biochem Cell Biol 2009; 41: 2351-2355.
35. Shiojima I, Walsh K. Regulation of cardiac growth and coronary angiogenesis by the Akt/PKB signaling pathway. Genes Dev 2006; 20: 3347-3365.
36. Degens H, Gilde AJ, Lindhout M, Willemsen PH, Van Der Vusse GJ, Van Bilsen M. Functional and metabolic adaptation of the heart to prolonged thyroid hormone treatment. Am J Physiol Heart Circ Physiol 2003; 284: H108-115.
37. Kuzman JA, Vogelsang KA, Thomas TA, Gerdes AM. L-Thyroxine activates Akt signaling in the heart. J Mol Cell Cardiol 2005; 39: 251-258.
38. Araujo AS, Schenkel P, Enzveiler AT, Fernandes TR, Partata WA, Llesuy S, et al. The role of redox signaling in cardiac hypertrophy induced by experimental hyperthyroidism. J Mol Endocrinol 2008; 41: 423-430.
39. Araujo AS, Fernandes T, Ribeiro MF, Khaper N, Belló-Klein A. Redox regulation of myocardial ERK 1/2 phosphorylation in experimental hyperthyroidism: role of thioredoxin-peroxiredoxin system. J Cardiovasc Pharmacol 2010; 56: 513-517.
40. Fernandes RO, Dreher GJ, Schenkel PC, Fernandes TR, Ribeiro MF, Araujo AS, et al. Redox status and pro-survival/pro-apoptotic protein expression in the early cardiac hypertrophy induced by experimental hyperthyroidism. Cell Biochem Funct 2011; 29: 617-623.