Phytoestrogens by inhibiting the non-classical oestrogen receptor, overcome the adverse effect of bisphenol A on hFOB 1.19 cells

Document Type: Original Article


1 Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, 47000 Selangor, Malaysia

2 Faculty of Medicine and Health Sciences, Universiti Malaysia Sarawak (UNIMAS), 94300 Kota Samarahan, Sarawak, Malaysia

3 Institute for Pathology, Laboratory and Forensic Medicine (IPPerForM), Universiti Teknologi MARA, Sungai Buloh Campus, 47000 Selangor, Malaysia



Objective(s): Since bisphenol A (BPA) induces bone loss and phytoestrogens enhance the osteoblastogenesis by binding to the non-classical and classical oestrogen receptors, respectively, the present study was aimed to observe the osteoprotective effect of phytoestrogens on BPA-induced osteoblasts in hFOB 1.19 cells.
Materials and Methods: All groups of hFOB 1.19 cells were induced with 12.5 μg/ml of BPA except the control (Ctrl) group. Meanwhile, treated groups received phytoestrogens; Daidzein (Dz), Genistein (Gt), Equol (Eq) and 17β-oestradiol (Est) in different concentrations for 24 hr duration.
Results: We found that the protein expression of non-classical oestrogen-related receptor (ERRG) was highly expressed in BPA group, whereas classical oestrogen receptor alpha (ERα) and oestrogen receptor beta (ERβ) were relatively increased with phytoestrogens treatment under BPA exposure. The dense actin cytoskeletal filaments were also observed. qRT-PCR showed up-regulation of mitogen-activated protein kinase 3 (MAPK3) and G protein-coupled receptor 30 (GPR30) expressions; significant down-regulation of ERRG and up-regulation of ERα and ERβ were observed in phytoestrogens-treated cells, which was supported by the increased expressions of oestrogen receptor 1 (ESR1) and oestrogen receptor 2 (ESR2).
Conclusion: Phytoestrogens improved the deteriorative effect of BPA via down-regulation of ERRG in hFOB 1.19 cells. This study showed that the efficacy of consumption of phytoestrogens in rendering them as potential therapeutic strategy in combating the adverse bone effects of BPA.


1. Centrella M, McCarthy TL. Estrogen receptor dependent gene expression by osteoblasts - Direct, indirect, circumspect, and speculative effects. Steroids 2012; 77: 174–184.
2. Tohmé M, Prud’Homme SM, Boulahtouf A, Samarut E, Brunet F, Bernard L, et al. Estrogen-related receptor γ is an in vivo receptor of bisphenol A. FASEB J 2014; 28: 3124–3133.
3. Matsushima A, Teramoto T, Okada H, Liu X, Tokunaga T, Kakuta Y, et al. ERRγ tethers strongly bisphenol A and 4-α-cumylphenol in an induced-fit manner. Biochem Biophys Res Commun 2008; 373: 408–413.
4. Cardelli M, Aubin JE. ERRγ is not required for skeletal development but is a RUNX2-dependent negative regulator of postnatal bone formation in male mice. PLoS ONE  2014; 9: e109592.
5. Jeong BC, Lee YS, Park YY, Bae IH, Kim DK, Koo SH, et al. The orphan nuclear receptor estrogen receptor-related receptor γ negatively regulates BMP2-induced osteoblast differentiation and bone formation. J Biol Chem 2009; 284 :14211-14218.
6. Bidwell JP, Fey EG, van Wijnen AJ, Penman S, Stein JL, Lian J.B, et al. Nuclear Matrix Proteins Distinguish Normal Diploid Osteoblasts from Osteosarcoma Cells. Cancer Res 1994; 54: 28–32.
7. Felson D, Zhang Y, Hannan M, Kiel DP, Wilson PW, Anderson JJ. The effect of postmenopausal estrogen therapy on bone density in elderly women. N Engl J Med 1993; 329:1141-1146.
8. Zavatti M, Resca E, Bertoni L, Maraldi T, Guida M, Carnevale G, et al. Ferutinin promotes proliferation and osteoblastic differentiation in human amniotic fluid and dental pulp stem cells. Life Sci 2013; 92: 993–1003.
9. Shedd-Wise KM, Alekel DL, Hofmann H, Hanson KB, Schiferl DJ, Hanson LN, et al. The Soy Isoflavones for Reducing Bone Loss Study, 3-Yr Effects on pQCT Bone Mineral Density and Strength Measures in Postmenopausal Women. J Clin Densitom 2011; 14: 47–57.
10. Chang KL, Hu YC, Hsieh BS, Cheng HL, Hsu HW, Huang LW, et al. Combined effect of soy isoflavones and vitamin D3 on bone loss in ovariectomized rats. Nutrition 2013; 29: 250–257.
11. Kuiper GG, Carlsson B, Grandien K, Enmark E, Häggblad J, Nilsson S, et al. Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors alpha and beta. Endocrinol 1997; 138: 863–870.
12. An J, Tzagarakis-Foster C, Scharschmidt TC, Lomri N, Leitman DC. Estrogen receptor β-selective transcriptional activity and recruitment of coregulators by phytoestrogens. J Biol Chem 2001; 276: 17808–17814.
13. Chen XW, Garner SC, Anderson JJB. Isoflavones regulate interleukin-6 and osteoprotegerin synthesis during osteoblast cell differentiation via an estrogen-receptor-dependent pathway. Biochem Biophysic Res Commun 2002; 295: 417-422.
14. Kolios L, Sehmisch S, Daub F, Rack T, Tezval M, Stuermer KM, et al. Equol but not genistein improves early metaphyseal fracture healing in osteoporotic rats. Planta Med 2009; 75: 459–465.
15. Ohtomo T, Uehara M, Peñalvo JL, Adlercreutz H, Katsumata S, Suzuki K, et al. Comparative activities of daidzein metabolites, equol and O-desmethylangolensin, on bone mineral density and lipid metabolism in ovariectomized mice and in osteoclast cell cultures. Eur J Nutr 2008; 47: 273–279.
16. Wang TTY, Sathyamoorthy N, Phang JM. Molecular effects of genistein on estrogen receptor mediated pathways. Carcinogenesis 1996; 17: 271–275.
17. Thent ZC, Froemming GRA, Ismail ABM, Fuad SBSA, Muid S. Employing different types of phytoestrogens improve bone mineralization in bisphenol A induced osteoblast. Life Sci 2018; 210: 214-223.
18. Houben F, Ramaekers FCS, Snoeckx LHEH, Broers JL. Role of nuclear lamina-cytoskeleton interactions in the maintenance of cellular strength. Biochim Biophys Acta 2007; 1773: 675-686.
19. Zhao HY, Bi YF, Ma LY, Zhao L, Wang TG, Zhang LZ, et al. The effects of bisphenol A,BPA, exposure on fat mass and serum leptin concentrations have no impact on bone mineral densities in non-obese premenopausal women. Clin Biochem 2012; 45: 1602–1606.
20. Alonso-Magdalena P, Ropero AB, Soriano S, García-Arévalo M, Ripoll C, Fuentes E, et al. Bisphenol-A acts as a potent estrogen via non-classical estrogen triggered pathways. Mol Cell Endocrinol  2012; 355: 201–207.
21. Kurosawa T, Hiroi H, Tsutsumi O, Ishikawa T, Osuga Y, Fujiwara T, et al. The Activity of Bisphenol A Depends on Both the Estrogen Receptor Subtype and the Cell Type. Endocrine J 2002; 49: 465–471.
22. Suzuki N, Hattori A. Bisphenol a suppresses osteoclastic and osteoblastic activities in the cultured scales of goldfish. Life Sci 2003; 73: 2237–2247.
23. Soto AM, Sonnenschein C, Chung KL, Fernandez MF, Olea N, Serrano FO. The E-SCREEN assay as a tool to identify estrogens, An update on estrogenic environmental pollutants. Environ Health Perspect 1995; 103: 113–122.
24. Hwang JK, Min KH, Choi KH, Hwang YC, Jeong IK, Ahn KJ, et al. Bisphenol A reduces differentiation and stimulates apoptosis of osteoclasts and osteoblasts.  Life Sci 2013; 93: 367–372.
25. Roepke TA, Bosch MA, Rick EA, Lee B, Wagner EJ, Seidlova-Wuttke D, et al. Contribution of a membrane estrogen receptor to the estrogenic regulation of body temperature and energy homeostasis. Endocrinol 2010; 151: 4926–4937.
26. Roman-Blas JA, Castañeda S, Largo R, Herrero-Beaumont G. Osteoarthritis associated with estrogen deficiency. Arthritis Res Ther 2009; 11:241.
27. Bhargavan B, Singh D, Gautam AK, Mishra JS, Kumar A, Goel A, et al. Medicarpin, a legume phytoalexin, stimulates osteoblast differentiation and promotes peak bone mass achievement in rats, Evidence for estrogen receptor β-mediated osteogenic action of medicarpin. J Nutr Biochem 2012; 23: 27–38.
28. Liao MH, Tai YT, Cherng YG, Liu SH, Chang YA, Lin PI, et al. Genistein induces oestrogen receptor-a gene expression in osteoblasts through the activation of mitogen-activated protein kinases/NF-kB/ activator protein-1 and promotes cell mineralisation. Br J Nutr 2014; 111: 55-63.
29. Jin X, Sun J, Yu B, Wang Y, Sun WJ, Yang J, et al. Daidzein stimulates osteogenesis facilitating proliferation, differentiation, and antiapoptosis in human osteoblast-like MG-63 cells via estrogen receptor–dependent MEK/ERK and PI3K/Akt activation. Nutr Res 2017; 42: 20–30.
30. Sun J, Sun WJ, Li ZY, Li L, Wang Y, Zhao Y, et al. Daidzein increases OPG/RANKL ratio and suppresses IL-6 in MG-63 osteoblast cells. Int Immunopharmacol 2016; 40: 32–40.
31. Fujioka M, Uehara M, Wu J, Adlercreutz H, Suzuki K, Kanazawa K, et al. Equol, a metabolite of daidzein, inhibits bone loss in ovariectomized mice. J Nutr 2004; 134: 2623-2627.
32. Wang J, Xu J, Wang B, Shu FR, Chen K, Mi MT. Equol promotes rat osteoblast proliferation and differentiation through activating estrogen receptor. Genetics Mol Res 2014; 13: 5055–5063.
33. Muthukumaran P, Lim CT, Lee T. Estradiol influences the mechanical properties of human fetal osteoblasts through cytoskeletal changes. Biochem Biophysic Res Commun 2012; 423: 503–508.
34. de Wilde A, Heberden C, Chaumaz G, Bordat C, Lieberherr M. Signaling networks from Gbeta1 subunit to transcription factors and actin remodeling via a membrane-located ERbeta-related protein in the rapid action of daidzein in osteoblasts. J Cell Physiol 2006; 209: 786-801.
35. Yoon S, Seger R. The extracellular signal-regulated kinase, Multiple substrates regulate diverse cellular functions. Growth Factors 2006; 24: 21–44.
36. Murakami S, Balmes G, McKinney S, Zhang Z, Givol D, de Crombrugghe B. Constitutive activation of MEK1 in chondrocytes causes Stat1-independent achondroplasia-like dwarfism and rescues the Fgfr3-deficient mouse phenotype. Genes Development 2004; 18: 290–305.
37. Matsushita T, Chan YY, Kawanami A, Balmes G, Landreth GE, Murakami S. extracellular signal-regulated kinase 1, ERK1, and ERK2 Play essential roles in osteoblast differentiation and in supporting osteoclastogenesis. Mol Cell Biol 2009; 29: 5843–5857.
38. Xiao G, Gopalakrishnan R, Jiang D, Reith E, Benson MD, Franceschi RT. Franceschi, Bone morphogenetic proteins, extracellular matrix, and mitogen-activated protein kinase signaling pathways are required for osteoblast-specific gene expression and differentiation in MC3T3-E1 cells. J Bone Min Res 2002; 17: 101–110.
39. Ganai AA, Khan AA, Malik ZA, Farooqi H. Genistein modulates the expression of NF-κB and MAPK ,p-38 and ERK1/2, thereby attenuating d-Galactosamine induced fulminant hepatic failure in Wistar rats. Toxicol Appl Pharmacol 2015; 283: 139–146.
40. Heino TJ, Chagin AS, Sävendahl L. The novel estrogen receptor G-protein-coupled receptor 30 is expressed in human bone. J Endocrinol 2008;197:R1-6.
41. Windahl SH, Andersson N, Chagin AS, Mårtensson UE, Carlsten H, Olde B, et al. The role of the G protein-coupled receptor GPR30 in the effects of estrogen in ovariectomized mice. Am J Physiol Endocrinol Metab 2009; 296: E490-E496.
42. Hertrampf T, Gruca MJ, Seibel J, Laudenbach U, Fritzemeier KH, Diel P. The bone-protective effect of the phytoestrogen genistein is mediated via ERα-dependent mechanisms and strongly enhanced by physical activity. Bone 2007; 40:1529-1535.
43. Khan K, Pal S, Yadav M, Maurya R, Trivedi AK, Sanyal S, et al. Prunetin signals via G-protein-coupled receptor, GPR30,GPER1, Stimulation of adenylyl cyclase and cAMP-mediated activation of MAPK signaling induces Runx2 expression in osteoblasts to promote bone regeneration. J Nutr Biochem 2015; 26:1491-1501.
44. Teplyuk NM, Galindo M, Teplyuk VI, Pratap J, Young DW, Lapointe D, et al. Runx2 regulates G protein-coupled signaling pathways to control growth of osteoblast progenitors. J Biol Chem  2008; 283: 27585–27597.
45. Yen M, Chien CC, Chiu I, Huang HI, Chen YC, Hu HI, et al. Multilineage differentiation and characterization of the human fetal osteoblastic 1.19 cell line, a possible in vitro model of human mesenchymal progenitors. Stem Cells 2007; 25: 125-131.
46. Miki Y, Suzuki T, Nagasaki S, Hata S, Akahira J, Sasano H. Comparative effects of raloxifene, tamoxifen and estradiol on human osteoblasts in vitro, Estrogen receptor dependent or independent pathways of raloxifene. J Steroid Biochem Molecul Biol 2009; 113: 281–289.
47. Turner RT, Rickard DJ, Iwaniec UT, Spelsberg TC. Estrogens and Progestins in ‘Principles of Bone Biology 3rd edition’ (Bilezikian J.P, et al. eds.): Academic Press, San Diego. 2008. p.855–879.
48. Waters KM, Rickard DJ, Lawrence RB, Khosla S, Katzenellenbogen JA, Katzenellenbogen BS, et al. Estrogen regulation of human osteoblast function is determined by the stage of differentiation and the estrogen receptor isoform. J Cell Biochem 2001; 83: 448–462.