Characterization of the first highly predatory Bdellovibrio bacteriovorus from Iran and its potential lytic activity against principal pathogenic Enterobacteriaceae

Document Type: Original Article


1 Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Sciences and Technology, University of Isfahan, Isfahan, Iran

2 Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran

3 Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran



Objective(s): Bdellovibrio-and-like organisms (BALOs) are predatory prokaryotes that attack and kill other Gram-negative bacteria for growth and reproduction. This study describes the isolation, identification, biological properties, and bacteriolytic activity of the first Bdellovibrio bacteriovorus with a broad prey range from Iran.
Materials and Methods: One BALO strain with high predatory potency was isolated from the rhizosphere soil using Enteropathogenic Escherichia coli as prey. It was identified and designated as Bdellovibrio bacteriovorus strain SOIR-1 through plaque assays, transmission electron microscopy (TEM), Bdellovibrio-specific PCRs, and 16S rRNA gene sequence analysis. Biological characterization and analysis of bacteriolytic activity were also performed.
Results: TEM and Bdellovibrio-specific PCRs confirmed that the strain SOIR-1 belongs to the genus Bdellovibrio. Analysis of the 16S rRNA gene sequence revealed its close phylogenetic relationship with strains of Bdellovibrio bacteriovorus. The strain SOIR-1 grew within the temperature range of 25–37 °C and the pH range of 6.0–8.0, with the optimal predatory activity at 30 °C and pH 7.4. It had the highest and lowest bacteriolytic activity toward Shigella dysenteriae and Pseudomonas aeruginosa with a killing rate of 89.66% and 74.83%, respectively.  
Conclusion: Considering the hypothesis of bdellovibrios heterogeneity, identification of new isolates contributes to a deeper understanding of their diversity, their ecological roles, and their promising potential as living antibiotics or biocontrol agents. Bdellovibrios with broad bacteriolytic nature has not previously been reported in sufficient detail from Iran. The results of this study showed the great potential of native B. bacteriovorus strain SOIR-1 in the control and treatment of diseases caused by pathogenic Enterobacteriaceae.


1. Davies J, Davies D. Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev 2010; 74:417-433.
2. Kallen AJ, Srinivasan A. Current epidemiology of multidrug-resistant gram-negative bacilli in the United States. Infect Control Hosp Epidemiol 2010; 31:S51-S54.
3. Aslam B, Wang W, Arshad MI, Khurshid M, Muzammil S, Rasool MH, et al. Antibiotic resistance: a rundown of a global crisis. Infect Drug Resist 2018; 11:1645-1658.
4. Cos P, Tote K, Horemans T, Maes L. Biofilms: an extra hurdle for effective antimicrobial therapy. Curr Pharm Des 2010; 16:2279-2295.
5. Hall-Stoodley L, Costerton JW, Stoodley P. Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2004; 2:95-108.
6. Høiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O. Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents 2010; 35:322-332.
7. Kadouri DE, To K, Shanks RM, Doi Y. Predatory bacteria: a potential ally against multidrug-resistant Gram-negative pathogens. PLoS One 2013; 8:e63397.
8. Martin MO. Predatory prokaryotes: an emerging research opportunity. J Mol Microbiol Biotechnol 2002; 4:467-478.
9. Markelova NY. Predacious bacteria, Bdellovibrio with potential for biocontrol. Int J Hyg Environ Health 2010; 213:428-431.
10. Yair S, Yaacov D, Susan K, Jurkevitch E. Small eats big: ecology and diversity of Bdellovibrio and like organisms, and their dynamics in predator-prey interactions. Agronomie 2003; 23:433-439.
11. Dwidar M, Monnappa AK, Mitchell RJ. The dual probiotic and antibiotic nature of Bdellovibrio bacteriovorus. BMB Rep 2012; 45:71-78.
12. Davidov Y, Jurkevitch E. Diversity and evolution of Bdellovibrio-and-like organisms (BALOs), reclassification of Bacteriovorax starrii as Peredibacter starrii gen. nov., comb. nov., and description of the Bacteriovorax–Peredibacter clade as Bacteriovoracaceae fam. nov. Int J Syst Evol Microbiol 2004; 54:1439-1452.
13. Strauch E, Schwudke D, Linscheid M. Predatory mechanisms of Bdellovibrio and like organisms. Future Microbiol 2007; 2:63-73.
14. Davidov Y, Friedjung A, Jurkevitch E. Structure analysis of a soil community of predatory bacteria using culture‐dependent and culture‐independent methods reveals a hitherto undetected diversity of Bdellovibrio‐and‐like organisms. Environ Microbiol 2006; 8:1667-1673.
15. Schwudke D, Strauch E, Krueger M, Appel B. Taxonomic studies of predatory bdellovibrios based on 16S rRNA analysis, ribotyping and the hit locus and characterization of isolates from the gut of animals. Syst Appl Microbiol 2001; 24:385-394.
16. Jurkevitch E, Minz D, Ramati B, Barel G. Prey range characterization, ribotyping, and diversity of soil and rhizosphere Bdellovibrio spp. isolated on phytopathogenic bacteria. Appl Environ Microbiol 2000; 66:2365-2371.
17. Sockett RE, Lambert C. Bdellovibrio as therapeutic agents: a predatory renaissance? Nat Rev Microbiol 2004; 2:669-675.
18. Stolp H, Starr M. Bdellovibrio bacteriovorus gen. et sp. n., a predatory, ectoparasitic, and bacteriolytic microorganism. Antonie Van Leeuwenhoek 1963; 29:217-248.
19. Pan A, Chanda I, Chakrabarti J. Analysis of the genome and proteome composition of Bdellovibrio bacteriovorus: indication for recent prey-derived horizontal gene transfer. Genomics 2011; 98:213-222.
20. Rendulic S, Jagtap P, Rosinus A, Eppinger M, Baar C, Lanz C, et al. A predator unmasked: life cycle of Bdellovibrio bacteriovorus from a genomic perspective. Science 2004; 303:689-692.
21. Lambert C, Morehouse KA, Chang C-Y, Sockett RE. Bdellovibrio: growth and development during the predatory cycle. Curr Opin Microbiol 2006; 9:639-644.
22. Sockett RE. Predatory lifestyle of Bdellovibrio bacteriovorus. Annu Rev Microbiol 2009; 63:523-539.
23. Dashiff A, Kadouri DE. A new method for isolating host-independent variants of Bdellovibrio bacteriovorus using E. coli auxotrophs. Open Microbiol J 2009; 3:87–91.
24. Chu WH, Zhu W. Isolation of Bdellovibrio as biological therapeutic agents used for the treatment of Aeromonas hydrophila infection in fish. Zoonoses Public Health 2010; 57:258-264.
25. Dashiff A, Junka R, Libera M, Kadouri DE. Predation of human pathogens by the predatory bacteria Micavibrio aeruginosavorus and Bdellovibrio bacteriovorus. J Appl Microbiol 2011; 110:431-444.
26. Kadouri DE, O’Toole GA. Susceptibility of biofilms to Bdellovibrio bacteriovorus attack. Appl Environ Microbiol 2005; 71:4044-4051.
27. Monnappa AK, Dwidar M, Seo JK, Hur J-H, Mitchell RJ. Bdellovibrio bacteriovorus inhibits Staphylococcus aureus biofilm formation and invasion into human epithelial cells. Sci Rep 2014; 4:1-8.
28. Shanks RM, Kadouri DE. Predatory prokaryotes wage war against eye infections. Future Microbiol 2014; 9:429-432.
29. Van Essche M, Quirynen M, Sliepen I, Loozen G, Boon N, Van Eldere J, et al. Killing of anaerobic pathogens by predatory bacteria. Mol Oral Microbiol 2011; 26:52-61.
30. Ros M, Pascual JA, Garcia C, Hernandez MT, Insam H. Hydrolase activities, microbial biomass and bacterial community in a soil after long-term amendment with different composts. Soil Biol Biochem 2006; 38:3443-3452.
31. Kumar S, Stecher G, Tamura K. MEGA7: molecularevolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 2016; 33:1870-1874.
32. Iebba V, Santangelo F, Totino V, Nicoletti M, Gagliardi A, De Biase RV, et al. Higher prevalence and abundance of Bdellovibrio bacteriovorus in the human gut of healthy subjects. PLoS One 2013:e61608.
33. Feng S, Tan CH, Cohen Y, Rice SA. Isolation of Bdellovibrio bacteriovorus from a tropical wastewater treatment plant and predation of mixed species biofilms assembled by the native community members. Environ Microbiol 2016; 18:3923-3931.
34. Baer ML, Ravel J, Chun J, Hill RT, Williams HN. A proposal for the reclassification of Bdellovibrio stolpii and Bdellovibrio starrii into a new genus, Bacteriovorax gen. nov. as Bacteriovorax stolpii comb. nov. and Bacteriovorax starrii comb. nov., respectively. Int J Syst Evol Microbiol 2000; 50:219-224.
35. Koval SF, Hynes SH, Flannagan RS, Pasternak Z, Davidov Y, Jurkevitch E. Bdellovibrio exovorus sp. nov., a novel predator of Caulobacter crescentus. Int J Syst Evol Microbiol 2013; 63:146-151.
36. Shemesh Y, Jurkevitch E. Plastic phenotypic resistance to predation by Bdellovibrio and like organisms in bacterial prey. Environ Microbiol 2004; 6:12-18.
37. Oyedara OO, Luna‐Santillana D, de Jesus E, Olguin‐Rodriguez O, Guo X, Mendoza‐Villa MA, et al. Isolation of Bdellovibrio sp. from soil samples in Mexico and their potential applications in control of pathogens. Microbiologyopen 2016; 5:992-1002.
38. Strauch E, Beck S, Appel B. Bdellovibrio and like organisms: potential sources for new biochemicals and therapeutic agents? In: Jurkevitch E, editor. Predatory Prokaryotes-Biology, Ecology and Evolution. vol 4. 1st ed: Springer; 2006. p. 131-152.
39. Rogosky AM, Moak PL, Emmert EA. Differential predation by Bdellovibrio bacteriovorus 109J. Curr Microbiol 2006; 52:81-85.
40. Li H, Liu C, Chen L, Zhang X, Cai J. Biological characterization of two marine Bdellovibrio-and-like organisms isolated from Daya bay of Shenzhen, China and their application in the elimination of Vibrio parahaemolyticus in oyster. Int J Food Microbiol 2011; 151:36-43.
41. Youdkes D, Helman Y, Burdman S, Matan O, Jurkevitch E. Potential control of potato soft rot disease by the obligate predators Bdellovibrio and like organisms. Appl Environ Microbiol 2020; 86:e02543-19.
42. McNeely D, Chanyi RM, Dooley JS, Moore JE, Koval SF. Biocontrol of Burkholderia cepacia complex bacteria and bacterial phytopathogens by Bdellovibrio bacteriovorus. Can J Microbiol 2017; 63:350-358.
43. Varon M, Shilo M. Attachment of Bdellovibrio bacteriovorus to cell wall mutants of Salmonella spp. and Escherichia coli. J Bacteriol 1969; 97:977-979.
44. Koval SF, Hynes SH. Effect of paracrystalline protein surface layers on predation by Bdellovibrio bacteriovorus. J Bacteriol 1991; 173:2244-2249.
45. Koval SF, Bayer ME. Bacterial capsules: no barrier against Bdellovibrio. Microbiology 1997; 143:749-753.
46. Gupta S, Tang C, Tran M, Kadouri DE. Effect of predatory bacteria on human cell lines. PLoS One 2016; 11:e0161242.
47. Schwudke D, Linscheid M, Strauch E, Appel B, Zähringer U, Moll H, et al. The obligate predatory Bdellovibrio bacteriovorus possesses a neutral lipid A containing alpha-D-Mannoses that replace phosphate residues: similarities and differences between the lipid As and the lipopolysaccharides of the wild type strain B. bacteriovorus HD100 and its host-independent derivative HI100. J Biol Chem 2003; 278:27502-27512.
48. Atterbury RJ, Hobley L, Till R, Lambert C, Capeness MJ, Lerner TR, et al. Effects of orally administered Bdellovibrio bacteriovorus on the well-being and Salmonella colonization of young chicks. Appl Environ Microbiol 2011; 77:5794-5803.
49. Shatzkes K, Chae R, Tang C, Ramirez GC, Mukherjee S, Tsenova L, et al. Examining the safety of respiratory and intravenous inoculation of Bdellovibrio bacteriovorus and Micavibrio aeruginosavorus in a mouse model. Sci Rep 2015; 5:12899.
50. Shatzkes K, Singleton E, Tang C, Zuena M, Shukla S, Gupta S, et al. Predatory bacteria attenuate Klebsiella pneumoniae burden in rat lungs. mBio 2016; 7:e01847-16.
51. Pasternak Z, Njagi M, Shani Y, Chanyi R, Rotem O, Lurie-Weinberger M, et al. In and out: an analysis of epibiotic vs periplasmic bacterial predators. ISME J 2014; 8:625-635.
52. Sun Y, Ye J, Hou Y, Chen H, Cao J, Zhou T. Predation efficacy of Bdellovibrio bacteriovorus on multidrug-resistant clinical pathogens and their corresponding biofilms. Jpn J Infect Dis 2017; 70:485-489.
53. Chen H, Williams H. Sharing of prey: coinfection of a bacterium by a virus and a prokaryotic predator. mBio 2012; 3:e00051-12.
54. Hobley L, Summers JK, Till R, Milner DS, Atterbury RJ, Stroud A, et al. Dual predation by bacteriophage and Bdellovibrio bacteriovorus can eradicate Escherichia coli prey in situations where single predation cannot. J Bacteriol 2020; 202:e00629-19.