Estrogen and progesterone attenuate glutamate neurotoxicity via regulation of EAAT3 and GLT-1 in a rat model of ischemic stroke

Document Type: Original Article

Authors

1 Anatomical Sciences Research Center, Institute for Basic Sciences,Kashan University of Medical Sciences, Kashan, Iran

2 Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran

3 Institute of Neuroanatomy, Faculty of Medicine, RWTH Aachen University, Aachen, Germany

10.22038/ijbms.2020.48090.11039

Abstract

Objective(s): Glutamate is the most widespread neurotransmitter in the central nervous system and has several functions as a neuromodulator in the brain although in pathological conditions like ischemia it is excessively released causing cell death. Under physiological conditions, glutamate is rapidly scavenged from the synaptic cleft by excitatory amino-acid transporters (EAATs). An imbalance in glutamatergic neurotransmission could influence the expression of glutamate transporters and is a pathological feature in several neurological disorders. It has been shown that estrogen and progesterone act as neuroprotective agents after brain injury. This study aims to investigate the role of hormone therapy after middle cerebral artery occlusion (tMCAO) in the expression of GLT-1 and EAAT3 as glutamate transporters.
Materials and Methods: Middle cerebral artery occlusion technique was performed in Wistar rats in order to induce focal cerebral ischemia. Estrogen, progesterone, and a combination of both hormones were injected subcutaneously in the early minutes of reperfusion. Sensorimotor functional tests were performed and infarct volume was calculated by TTC staining of brain section. Gene and protein expression of EAAT3 and GLT-1 were evaluated by RT-PCR, immunoblotting, and immunohistochemistry.
Results: Behavioral scores were increased and infarct volume was reduced by hormone therapy. RT-PCR, immunoblotting, and immunohistochemistry data showed that the expression of GLT-1 and EAAT3 increased after ischemia. Also, estrogen and progesterone treatment enhanced mRNA and protein expression levels of GLT-1 and EAAT3 compared with ischemia.
Conclusion: Steroids may protect brain tissue against ischemia-induced tissue degeneration by decreasing extracellular glutamate levels through the induction of glutamate transporters.

Keywords


1. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Blaha MJ, et al. Heart disease and stroke statistics-2014 update. Circ Res 2014; 129:e28-e292.
2.    Lin Y, Zhang J-C, Fu J, Chen F, Wang J, Wu Z-L, et al. Hyperforin attenuates brain damage induced by transient middle cerebral artery occlusion (MCAO) in rats via inhibition of TRPC6 channels degradation. J Cereb Blood Flow Metab 2013; 33:253-262.
3.    Hou S-W, Wang Y-Q, Xu M, Shen D-H, Wang J-J, Huang F, et al. Functional integration of newly generated neurons into striatum after cerebral ischemia in the adult rat brain. Stroke 2008; 39:2837-2844.
4.    Krafft PR, Bailey EL, Lekic T, Rolland WB, Altay O, Tang J, et al. Etiology of stroke and choice of models. Int J Stroke 2012; 7:398-406.
5.    Wu J-y, Li M, Cao L-j, Sun M-l, Chen D, Ren H-g, et al. Protease Omi cleaving Hax-1 protein contributes to OGD/R-induced mitochondrial damage in neuroblastoma N2a cells and cerebral injury in MCAO mice. Acta Pharmacol Sin 2015; 36:1043-1052.
6.    Vahidinia Z, Tameh AA, Nejati M, Beyer C, Talaei SA, Moghadam SE, et al. The protective effect of bone marrow mesenchymal stem cells in a rat model of ischemic stroke via reducing the C-Jun N-terminal kinase expression. Pathol Res Pract 2019:152519-152528.
7.    Mirzaei H. Stroke in women: risk factors and clinical biomarkers. J Cell Biochem 2017; 118:4191-4202.
8.    Nejati M, Atlasi MA, Karimian M, Nikzad H, Tameh AA. Lipoprotein lipase gene polymorphisms as risk factors for stroke: a computational and meta-analysis. Iran J Basic Med Sci 2018; 21:701-708.
9.    Krzyżanowska W, Pomierny B, Filip M, Pera J. Glutamate transporters in brain ischemia: to modulate or not? Acta Pharmacol Sin 2014; 35:444-462.
10.    Kim K, Lee SG, Kegelman TP, Su ZZ, Das SK, Dash R, et al. Role of excitatory amino acid transporter‐2 (EAAT2) and glutamate in neurodegeneration: Opportunities for developing novel therapeutics. J Cell Physiol 2011; 226:2484-2493.
11.    Maragakis NJ, Dykes‐Hoberg M, Rothstein JD. Altered expression of the glutamate transporter EAAT2b in neurological disease. Ann Neurol 2004; 55:469-477.
12.    Hazell AS. Excitotoxic mechanisms in stroke: an update of concepts and treatment strategies. Neurochem Int 2007; 50:941-953.
13.    Campos F, Sobrino T, Ramos-Cabrer P, Argibay B, Agulla J, Pérez-Mato M, et al. Neuroprotection by glutamate oxaloacetate transaminase in ischemic stroke: an experimental study. J Cereb. Blood Flow Metab 2011; 31:1378-1386.
14.    Divito CB, Underhill SM. Excitatory amino acid transporters: roles in glutamatergic neurotransmission. Neurochem Int 2014; 73:172-180.
15.    Tameh AA, Clarner T, Beyer C, Atlasi MA, Hassanzadeh G, Naderian H. Regional regulation of glutamate signaling during cuprizone-induced demyelination in the brain. Ann Anat 2013; 195:415-423.
16.    Kostandy BB. The role of glutamate in neuronal ischemic injury: the role of spark in fire. J Neurol Sci 2012; 33:223-237.
17.    Papadia S, Soriano FX, Léveillé F, Martel M-A, Dakin KA, Hansen HH, et al. Synaptic NMDA receptor activity boosts intrinsic antioxidant defenses. Nat. Neurosci 2008; 11:476-487.
18.    Pawlak J, Brito V, Küppers E, Beyer C. Regulation of glutamate transporter GLAST and GLT-1 expression in astrocytes by estrogen. Brain Res 2005; 138:1-7.
19.    Benchoua A, Guégan C, Couriaud C, Hosseini H, Sampaı̈o N, Morin D, et al. Specific caspase pathways are activated in the two stages of cerebral infarction. J Neurosci 2001; 21:7127-7134.
20.    Taylor RC, Cullen SP, Martin SJ. Apoptosis: controlled demolition at the cellular level. Nat Rev Mol Cell Biol 2008; 9:231-241.
 21.    Strom JO, Theodorsson E, Holm L, Theodorsson A. Different methods for administering 17β-estradiol to ovariectomized rats result in opposite effects on ischemic brain damage. BMC Neurosci. 2010; 11:39-47.
22.    Kipp M, Beyer C. Impact of sex steroids on neuroinflammatory processes and experimental multiple sclerosis. Front Neuroendocrinol 2009; 30:188-200.
23.    Kipp M, Amor S, Krauth R, Beyer C. Multiple sclerosis: neuroprotective alliance of estrogen–progesterone and gender. Front Neuroendocrinol 2012; 33:1-16.
24.    Duportets L, Maria A, Vitecek S, Gadenne C, Debernard S. Steroid hormone signaling is involved in the age-dependent behavioral response to sex pheromone in the adult male moth Agrotis ipsilon. Gen Comp Endocrinol 2013; 186:58-66.
25.    Saleh TM, Connell BJ, Legge C, Cribb AE. Estrogen attenuates neuronal excitability in the insular cortex following middle cerebral artery occlusion. Brain Res 2004; 1018:119-129.
26.    Cai W, Zhu Y, Furuya K, Li Z, Sokabe M, Chen L. Two different molecular mechanisms underlying progesterone neuroprotection against ischemic brain damage. Neuropharmacology 2008; 55:127-138.
27.    Suzuki S, Brown CM, Wise PM. Neuroprotective effects of estrogens following ischemic stroke. Front Neuroendocrinol 2009; 30:201-211.
28.    Zhang Q-G, Raz L, Wang R, Han D, De Sevilla L, Yang F, et al. Estrogen attenuates ischemic oxidative damage via an estrogen receptor α-mediated inhibition of NADPH oxidase activation. J Neurosci 2009; 29:13823-13836.
29.    Dang J, Mitkari B, Kipp M, Beyer C. Gonadal steroids prevent cell damage and stimulate behavioral recovery after transient middle cerebral artery occlusion in male and female rats. Brain Behav Immun 2011; 25:715-726.
 30.    Liang Z, Valla J, Sefidvash‐Hockley S, Rogers J, Li R. Effects of estrogen treatment on glutamate uptake in cultured human astrocytes derived from cortex of Alzheimer’s disease patients. J Neurochem 2002; 80:807-814.
31.    Gazzaley AH, Weiland NG, McEwen BS, Morrison JH. Differential regulation of NMDAR1 mRNA and protein by estradiol in the rat hippocampus. J Neurosci 1996; 16:6830-6838.
 32.    Butchbach ME, Tian G, Guo H, Lin C-lG. Association of excitatory amino acid transporters, especially EAAT2, with cholesterol-rich lipid raft microdomains importance for excitory amino acid transporter localisation and function. J Biol Chem 2004; 279:34388-34396.
 33.    Hernández-Jiménez M, Martínez-López D, Gabandé-Rodríguez E, Martín-Segura A, Lizasoain I, Ledesma MD, et al. Seladin-1/DHCR24 Is neuroprotective by associating EAAT2 glutamate transporter to lipid rafts in experimental stroke. Stroke 2016; 47:206-213.
34.    Nejati M, Tameh AA, Vahidinia Z, Atlasi MA. Mesenchymal stem cells improve ischemic stroke injury by anti-inflammatory properties in rat model of middle cerebral artery occlusion. Iran Red Crescent Med J 2018; 20.
35.    Vahidinia Z, Alipour N, Atlasi MA, Naderian H, Beyer C, Azami Tameh A. Gonadal steroids block the calpain-1-dependent intrinsic pathway of apoptosis in an experimental rat stroke model. Neurol Res 2016:1-11.
36.    Nejati M, Tameh AA, Atlasi MA. Role of toll‐like receptors 2 and 4 in the neuroprotective effects of bone marrow–derived mesenchymal stem cells in an experimental model of ischemic stroke. J Cell Biochem 2019; 120:8053-8060.
    37.    Lammerding L, Slowik A, Johann S, Beyer C, Zendedel A. Poststroke inflammasome expression and regulation in the peri-infarct area by gonadal steroids after transient focal ischemia in the rat brain. Neuroendocrinology 2016; 103:460-475.
38.    Maragakis NJ, Rothstein JD. Glutamate transporters in neurologic disease. Arch Neurol 2001; 58:365-370.
39.    Pradillo J, Hurtado O, Romera C, Cardenas A, Fernandez-Tome P, Alonso-Escolano D, et al. TNFR1 mediates increased neuronal membrane EAAT3 expression after in vivo cerebral ischemic preconditioning. Neuroscience 2006; 138:1171-1178.
40.    Krzyżanowska W, Pomierny B, Bystrowska B, Pomierny-Chamioło L, Filip M, Budziszewska B, et al. Ceftriaxone-and N-acetylcysteine-induced brain tolerance to ischemia: Influence on glutamate levels in focal cerebral ischemia. PLoS One 2017; 12:e0186243.
41.    Amantea D, Russo R, Bagetta G, Corasaniti MT. From clinical evidence to molecular mechanisms underlying neuroprotection afforded by estrogens. Pharmacol Res 2005; 52:119-132.
42.    Luoma JI, Kelley BG, Mermelstein PG. Progesterone inhibition of voltage-gated calcium channels is a potential neuroprotective mechanism against excitotoxicity. Steroids 2011; 76:845-855.
43.    Carwile E, Wagner AK, Crago E, Alexander SA. Estrogen and stroke: a review of the current literature. J Neurosci Nurs 2009; 41:18-25.
44.    Hoffman GE, Merchenthaler I, Zup SL. Neuroprotection by ovarian hormones in animal models of neurological disease. Endocrine 2006; 29:217-231.
45.    Tameh AA, Karimian M, Zare-Dehghanani Z, Aftabi Y, Beyer C. Role of steroid therapy after ischemic stroke by n-methyl-d-aspartate receptor gene regulation. J Stroke Cerebrovasc Dis 2018; 27:3066-3075.
46.    Lee E, Sidoryk-Wêgrzynowicz M, Wang N, Webb A, Son D-S, Lee K, et al. GPR30 regulates glutamate transporter GLT-1 expression in rat primary astrocytes. J Biol Chem 2012; 287:26817-26828.
47.    Arranz AM, Gottlieb M, Perez-Cerda F, Matute C. Increased expression of glutamate transporters in subcortical white matter after transient focal cerebral ischemia. Neurobiol Dis 2010; 37:156-165.
48.    Bruhn T, Levy LM, Nielsen M, Christensen T, Johansen FF, Diemer NH. Ischemia induced changes in expression of the astrocyte glutamate transporter GLT1 in hippocampus of the rat. Neurochem Int 2000; 37:277-285.
49.    Azcoitia I, Barreto GE, Garcia-Segura LM. Molecular mechanisms and cellular events involved in the neuroprotective actions of estradiol. Analysis of sex differences. Front Neuroendocrinol 2019; 55:100787.
50.    Gottlieb M, Domercq M, Matute C. Altered expression of the glutamate transporter EAAC1 in neurons and immature oligodendrocytes after transient forebrain ischemia. J Cereb Blood Flow Metab 2000; 20:678-687.
51.    Cimarosti H, Jones NM, O’Shea RD, Pow DV, Salbego C, Beart PM. Hypoxic preconditioning in neonatal rat brain involves regulation of excitatory amino acid transporter 2 and estrogen receptor alpha. Neurosci Lett 2005; 385:52-57.
52.    Dawson L, Djali S, Gonzales C, Vinegra M, Zaleska M. Characterization of transient focal ischemia-induced increases in extracellular glutamate and aspartate in spontaneously hypertensive rats. Brain Res Bull 2000; 53:767-776.
53.    Rothstein JD, Patel S, Regan MR, Haenggeli C, Huang YH, Bergles DE, et al. β-Lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Nature 2005; 433:73-77.
54.    Ganel R, Ho T, Maragakis NJ, Jackson M, Steiner JP, Rothstein JD. Selective up-regulation of the glial Na+-dependent glutamate transporter GLT1 by a neuroimmunophilin ligand results in neuroprotection. Neurobiol Dis 2006; 21:556-567.
55.    Brann DW, Dhandapani K, Wakade C, Mahesh VB, Khan MM. Neurotrophic and neuroprotective actions of estrogen: basic mechanisms and clinical implications. Steroids 2007; 72:381-405.
56.    Cimarosti H, O’Shea RD, Jones NM, Horn AP, Simão F, Zamin LL, et al. The effects of estradiol on estrogen receptor and glutamate transporter expression in organotypic hippocampal cultures exposed to oxygen--glucose deprivation. Neurochem Res 2006; 31:483-490.
57.    Lee S-A, Choi J-G, Zuo Z. Volatile anesthetics attenuate oxidative stress-reduced activity of glutamate transporter type 3. Anesth Analg 2009; 109:1506.
58.    Dringen R, Hirrlinger J. Glutathione pathways in the brain. Biological chemistry 2003; 384:505-516.
 59.    Marí M, Morales A, Colell A, García-Ruiz C, Fernández-Checa JC. Mitochondrial glutathione, a key survival antioxidant. Antioxid Redox Signal 2009; 11:2685-2700.
60.    Anderson MF, Sims NR. The effects of focal ischemia and reperfusion on the glutathione content of mitochondria from rat brain subregions. J Neurochem 2002; 81:541-549.
61.    Yabuki Y, Fukunaga K. Oral administration of glutathione improves memory deficits following transient brain ischemia by reducing brain oxidative stress. Neuroscience 2013; 250:394-407.
62.    Lewerenz J, Maher P. Control of redox state and redox signaling by neural antioxidant systems. Antioxid Redox Signal 2011; 14:1449-1465.