Survey of various carbapenem-resistant mechanisms of Acinetobacter baumannii and Pseudomonas aeruginosa isolated from clinical samples in Iran

Document Type: Original Article


1 Pediatric Infections Research Center, Research Institute for Children’s Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran

2 Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran

3 Pediatric department, faculty of medicine, Hamadan University of Medical Sciences, Hamadan, Iran

4 Department of Microbiology, Reference Health Laboratories Research Center, Ministry of Health and Medical Education, Tehran, Iran



Objective(s): Pseudomonas aeruginosa and Acinetobacter baumannii resist antibiotics by different intrinsic and acquired mechanisms. This study aims to define various carbapenem-resistant mechanisms of isolated P. aeruginosa and A. baumannii from nine different provinces of Iran.
Materials and Methods: In this cross-sectional study, all carbapenem-resistant P. aeruginosa and A. baumannii samples from nine provinces of Iran on a one-year time horizon were gathered. Modified Hedge Test (MHT) and Carba NP-Test were applied to the identification of producing-carbapenemase strains. The most important carbapenemase genes recognized by PCR and gene overexpression of the efflux pump were surveyed by efflux pump inhibitors (EPIs) and confirmed by Real-Time PCR.
Results: Twenty-one percent and 43.5% of P. aeruginosa and A. baumannii isolates were resistant to carbapenem, respectively. MHT and Carba-NP tests identified 21% and 11% carbapenemase-producing strains in these Gram-negative bacteria, respectively. NDM-1 was the most prevalently detected carbapenemase in P. aeruginosa; OXA-51 and OXA-23 were the most significant genes in A. baumannii. EPIs identified active efflux pumps in 20% and 28% of P. aeruginosa and A. baumannii, respectively. Real-time PCR confirmed gene overexpression of efflux pumps in 54% and 30% of positive EPIs in P. aeruginosa and A. baumannii, respectively.
Conclusion: P. aeruginosa and A. baumannii may become multi-drug-resistant (MDR) and Extensively Drug-Resistant (XDR) strains and cause a high rate of mortality and morbidity. Thus, it is of necessity to prohibit the spread of antibiotic-resistant strains in hospitals.


1. Amini A , Ebrahimzadeh Namvar A. Antimicrobial resistance pattern and presence of beta-lactamase genes in Pseudomonas aeruginosa strains isolated from hospitalized patients, Babol-Iran. J Med Bacteriol 2019;8:45-50.
2. Bijari A, Azimi L, Fallah F, Ardebili A, Lari ER, Lari AR. Involvement of the multidrug efflux pumps in betalactams resistant Pseudomonas aerugionsa clinical isolates collected from burn patients in Iran. Infect Disord Drug Targets 2016;16:172-177.
3. Lari AR, Azimi L, Soroush S, Taherikalani M. Low prevalence of metallo-beta-lactamase in Pseudomonas aeruginosa isolated from a tertiary burn care center in Tehran. Int J Immunopathol Pharmacol 2015;28:384-389.
4. Armin S, Fallah F, Azimi L, Samadi Kafil H, Ghazvini K, Hasanzadeh S, et al. Warning: spread of NDM-1 in two border towns of Iran. Cell Mol Biol 2018;64:125-129.
5. Azimi L, Talebi M, Pourshafie MR, Owlia P, Rastegar Lari A. Characterization of carbapenemases in extensively drug resistance Acinetobacter baumannii in a burn care center in Iran. Int J Mol Cell Med 2015;4:46-53.
6. Mobasseri P, Azimi L, Salehi M, Hosseini F, Fallah F. Multi-drug resistance profiles and expression of adeijk and abem in Acinetobacter baumannii collected from humans by Real-time PCR. J Med Bacteriol 2018;7:50-56.
7. Owlia P, Azimi L, Gholami A, Asghari B, Lari AR. ESBL- and MBL-mediated resistance in Acinetobacter baumannii: a global threat to burn patients. Infez Med 2012;20:182-187.
8. Karbasizade V, Heidari L, Jafari R. Detection of oxa-type carbapenemase genes in Acinetobacter baumannii isolates from nosocomial infections in Isfahan hospitals, Iran. J Med Bacteriol 2015;4:31-36.
9. Nikaido H, Pagès JM. Broad-specificity efflux pumps and their role in multidrug resistance of gram-negative bacteria. FEMS Microbiol Rev 2012;36:340-363.
10. Clinical laboratory standards institute. Performance standards for antimicrobial susceptibility testing: nineteenth informational supplement M100–S21. CLSI, Wayne, PA. 2016.
11. Dortet L, Poirel L, Errera C, Nordmann P. CarbAcineto NP test for rapid detection of carbapenemase-producing Acinetobacter spp. J Clin Microbiol 2014;52:2359-2364.
12. Azimi L, Rastegar Lari A, Talebi M, Ebrahimzadeh Namvar AM, Soleymanzadeh Moghadam S. Evaluation of phenotypic methods for detection of Klebsiella Pneumoniae carbapenemase-producing K. Pneumoniae in Tehran. J Med Bacteriol 2013;2:26- 31.
13. Gheorghe I, Czobor I, Chifiriuc MC, Borcan E, Ghiţă C, Banu O, et al. Molecular screening of carbapenemase-producing gram-negative strains in Romanian intensive careunits during a one year survey. J Med Microbiol 2014;63:1303-1310.
14. Lowings M, Ehlers MM, Dreyer AW, Kock MM. High prevalence of oxacillinases in clinical multidrug-resistant Acinetobacter baumannii isolates from the Tshwane region, South Africa – an update. BMC Infect Dis 2015;14:2-10.
15. Yamazaki Y,  Funaki T,  Yasuhara T,  Sugano E,  Ugajin K,  Tahara S, et al. Molecular  characteristics  of  a  carbapenemase-producing   Enterobacter species  and Klebsiella  species  outbreak   in  a  Japanese  university  hospital. Showa Univ J Med Sci 2017; 29:163-172.
16. Zhou H, Pi BR, Yang Q, Yu YS, Chen YG, Li LJ, et al. Dissemination of imipenem-resistant Acinetobacter baumannii strains carrying the ISAba1 blaOXA-23 genes in a Chinese hospital. J Med Microbiol 2007;56:1076-1080.
17. Héritier C, Poirel L, Lambert T, Nordmann P. Contribution of acquired carbapenem-hydrolyzing oxacillinases to carbapenem resistance in Acinetobacter baumannii. Antimicrob Agents Chemother 2005;49:3198-3202.
18. Joshi PR, Acharya M, Kakshapati T, Leungtongkam U, Thummeepak R, Sitthisak S. Co-existence of blaOXA-23 and blaNDM-1 genes of Acinetobacter baumannii isolated from Nepal: antimicrobial resistance and clinical significance. Antimicrob Resist Infect Control 2017; 7:6-21.
19. Ardebili A, Talebi M, Azimi L, Rastegar Lari A. Effect of efflux pump inhibitor carbonyl cyanide 3-chlorophenylhydrazone on the minimum inhibitory concentration of ciprofloxacin in Acinetobacter baumannii clinical isolates. Jundishapur J Microbiol  2014; 7:e8691.
20. Azimi L, Namvar AE, Jamali S, Lari AR, Bijari A, Lari AR. Relative expression of efflux pumps in multi drug resistant Pseudomonas aeruginosa. Roum Arch Microbiol Immunol 2015;74:86-90.
21. Trevethan R. Sensitivity, specificity, and predictive values: foundations, pliabilities, and pitfalls in research and practice. Front  Public Health 2017;5:1-7.
22. Hadjadj L, Shoja S, Diene SM, Rolain JM. Dual infections of two carbapenemase-producing Acinetobacter baumannii clinical strains isolated from the same blood culture sample of a patient in Iran. Antimicrob Resist Infect Control 2018;7:39-42.
23. Lowe M, Ehlers MM, Ismail F, Peirano G, Becker PJ, Pitout JDD, et al. Acinetobacter baumannii: epidemiological and beta-lactamase data from two tertiary academic hospitals in Tshwane, South Africa. Front Microbiol 2018;9:1280-1289.
24. Subramaniyan JS, Sundaram JM. Occurrence of bla genes encoding carbapenem-resistant Pseudomonas aeruginosa and Acinetobacter baumannii from intensive care unit in a tertiary care hospital. J Lab Physicians 2018;10:208-213.
25. Ghasemian A, Salimian Rizi K, Rajabi Vardanjani H, Nojoomi F. Prevalence of clinically isolated metallo-beta-lactamase-producing Pseudomonas aeruginosa, coding genes, and possible risk factors in Iran. Iran J Pathol 2018;13:1-9.
26. Kuchibiro T, Komatsu M, Yamasaki K, Nakamura T, Nishio H, Nishi I, et al. Evaluation of the modified carbapenem inactivation method for the detection of carbapenemase-producing Enterobacteriaceae. J Infect Chemother 2018;24:262-266.
27. Davoudi-Monfared E, Khalili H.  The threat of carbapenem-resistant gram-negative bacteria in a Middle East region. Infect Drug Resist 2018;17:1831-1880.
28. Azimi L, Talebi M, Owlia P, Pourshafie MR, Najafi M, Lari ER, et al. Tracing of false negative results in phenotypic methods for identification of carbapenemase by Real-time PCR. Gene 2016;576:166-170.
29. De Kievit TR, Parkins MD, Gillis RJ, Srikumar R, Ceri H, Poole K, et al. Multidrug efflux pumps: expression patterns and contribution to antibiotic resistance in Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother. 2001;45:1761-1770.
30. El Kettani A, Maaloum F, Diawara I, Katfy K, Harrar N, Zerouali K, et al. Prevalence of Acinetobacter baumannii bacteremia in intensive care units of Ibn Rochd university hospital, Casablanca. Iran J Microbiol 2017;9:318-323.
31. Reza H. The frequency of multidrug-resistance and extensively drugresistant Acinetobacter baumannii in west of Iran. J Clin Microbiol Infect Dis 2018;1:4-8.
32. Sarikhani Z, Nazari R, Nateghi Rostami M. First report of OXA-143-lactamase    producing Acinetobacter baumannii in Qom, Iran. Iran J Basic Med Sci. 2017;20:1282-1286.
33. Hawkey J, Ascher DB, Judd LM, Wick RR, Kostoulias X, Cleland H, et al. Evolution of carbapenem resistance in Acinetobacter baumannii during a prolonged infection. Microb Genom 2018; 4:e000165.
34. Dou Q, Zou M, Li J, Wang H, Hu Y, Liu W. AdeABC efflux pump and resistance of Acinetobacter baumannii against carbapenem. Zhong Nan Da Xue Xue Bao Yi Xue Ban 2017;28;42:426-433.
35. Dias VC, Resende JA, Bastos AN, De Andrade Bastos LQ, De Andrade Bastos VQ, Bastos RV, et al. Epidemiological, physiological, and molecular characteristics of a brazilian collection of carbapenem- resistant Acinetobacter baumannii and Pseudomonas aeruginosa. Microb Drug Resist 2017;23:852-863.
36. Owrang M, Karimi A, Azimi L, Motaghi Nezhad R,  Fallah F. Relative gene expression RND type efflux pumps in tigecycline  resistant  Acinetobacter  baumannii isolated from training hospitals in Tehran, Iran. Int J Pediatr 2018;6:8669-8674.
37. Peleg AY, Adams J, Paterson DL. Tigecycline efflux as a mechanism for nonsusceptibility in Acinetobacter baumannii. Antimicrob Agents Chemother 2007;51:2065-2069.