Characteristics of Streptococcus agalactiae causing urinary tract infections: Emergence of new sequence types ST74 and ST38 in Iran

Document Type : Original Article

Authors

1 Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran

2 Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran

3 Department of Biology, North Tehran Branch, Islamic Azad University, Tehran, Iran

4 ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran

5 Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran

Abstract

Objective(s): Difficult-to-treat Streptococcus agalactiae infections are increasingly described in patients with urinary tract infections (UTIs). This occurrence could be due to the production of virulence determinants. This study aimed to characterize the molecular features of S. agalactiae responsible for UTIs.
Materials and Methods: In this cross-sectional study, 70 S. agalactiae isolated from UTIs were examined. Antibiotic susceptibility testing was performed using the disk diffusion method. All S. agalactiae isolates were confirmed by atr and dltS PCR assays. Virulence, alpha protein-like, and pilus island genes were detected by PCR. Isolates were characterized using the multilocus sequence typing method. 
Results: Multidrug resistance was observed in 80% of isolates. Five virulence profiles were detected, wherein cylE, lmb, bca, rib (35.7%), cylE, lmb, alp3 (27.1%), and cylE, lmb, bac, rib, alp2 (21.4%) were the most frequent detected profiles. S. agalactiae was isolated and categorized within three clonal complexes (CCs) including CC22 (40%), CC17 (25.7%), and CC23 (20%). The main sequence types (STs) found were ST22 (27.1%), ST23 (17.1%), ST17 (12.9%), ST31 (8.7%), ST40 (8.7%), ST74 (7.1%), ST48 (4.3%), ST890 (4.3%), ST189 (2.8%), ST38 (2.8%), ST52 (2.8%), and ST155 (1.4%). ST74 and ST38 were reported for the first time in Tehran-Iran. 
Conclusion: This study highlights the predominance of the CC22 lineage among S. agalactiae strains isolated from UTIs in Tehran, Iran, and highlights the significant penetration of this lineage into hospitals. MDR patterns among these strains appear to be becoming a major concern in the management of infections. 

Keywords

Main Subjects


1. Liu Y, Liu J. Group B Streptococcus: Virulence Factors and Pathogenic Mechanism. Microorganisms 2022; 10: 1-15.
2. Schmiemann G, Kniehl E, Gebhardt K, Matejczyk MM, Hummers-Pradier E. The diagnosis of urinary tract infection: a systematic review. Dtsch Arztebl Int 2010; 107: 361-367.
3. Creti R, Fabretti F, Orefici G, von Hunolstein C. Multiplex PCR assay for direct identification of group B streptococcal alpha-protein-like protein genes. J Clin Microbiol 2004; 42: 1326-1329.
4. Gherardi G, Imperi M, Baldassarri L, Pataracchia M, Alfarone G, Recchia S, et al. Molecular epidemiology and distribution of serotypes, surface proteins, and antibiotic resistance among group B streptococci in Italy. JClin Microbiol 2007; 45: 2909-2916.
5. Jiang H, Chen M, Li T, Liu H, Gong Y, Li M. Molecular characterization of Streptococcus agalactiae causing community-and hospital-acquired infections in Shanghai, China. Front Microbiol 2016; 7: 1-11.
6. Piccinelli G, Biscaro V, Gargiulo F, Caruso A, De Francesco MA. Characterization and antibiotic susceptibility of Streptococcus agalactiae isolates causing urinary tract infections. Infect Genet Evol 2015; 34: 1-6.
7. Jalalifar S, Havaei SA, Motallebirad T, Moghim S, Fazeli H, Esfahani BN. Determination of surface proteins profile, capsular genotyping, and antibiotic susceptibility patterns of Group B Streptococcus isolated from urinary tract infection of Iranian patients. BMC Res Notes 2019; 12: 1-6.
8. Nabavinia M, Khalili MB, Sadeh M, Eslami G, Vakili M, Azartoos N, et al. Distribution of Pilus island and antibiotic resistance genes in Streptococcus agalactiae obtained from vagina of pregnant women in Yazd, Iran. Iran J Microbiol 2020; 12: 411-416.
9. Tien N, Ho C-M, Lin H-J, Shih M-C, Ho M-W, Lin H-C, et al. Multilocus sequence typing of invasive group B Streptococcus in central area of Taiwan. J Microbiol Immunol Infect 2011; 44: 430-434.
10.    Arabestani MR, Mousavi SM, Nasaj M. Genotyping of clinical Streptococcus agalactiae strains based on molecular serotype of capsular (cps) gene cluster sequences using polymerase chain reaction. Arch Clin Infect Dis 2017; 12: 1-6.
11. Humphries R, Bobenchik AM, Hindler JA, Schuetz AN. Overview of changes to the clinical and laboratory standards institute performance standards for antimicrobial susceptibility testing, M100. J Clin Microbiol 2021; 59: 1-13.
12.    Zhang L, Ma L, Zhu L, Zhou X-H, Xu L-J, Guo C, et al. Molecular characterization of pathogenic group B streptococcus from a tertiary hospital in Shanxi, China: High incidence of sequence type 10 strains in infants/pregnant women. J Microbiol Immunol Infect 2021; 54: 1094-1100.
13.    Palmeiro JK, Dalla-Costa LM, Fracalanzza SE, Botelho AC, da Silva Nogueira K, Scheffer MC, et al. Phenotypic and genotypic characterization of group B streptococcal isolates in southern Brazil. J Clin Microbiol 2010; 48: 4397-4403.
14.    Maeda T, Tsuyuki Y, Fujita T, Fukushima Y, Goto M, Yoshida H, et al. Comparison of Streptococcus agalactiae Isolates from Humans and Companion Animals Reveals Genotypic and Phenotypic Differences. Jpn J Infect Dis 2020; 73: 308-315.
15.    Ghamari M, Jabalameli F, Emaneini M, Beigverdi R. Multiple-locus variable-number tandem repeat analysis for genotyping of erythromycin-resistant group B streptococci in Iran. New Microbes New Infect 2022; 45: 1-6.
16.    Sadeh M, Firouzi R, Derakhshandeh A, Khalili MB, Kong F, Kudinha T. Molecular characterization of Streptococcus agalactiae isolates from pregnant and non-pregnant women at Yazd University Hospital, Iran. Jundishapur J Microbiol 2016; 9: 1-6.
17.    Jalalifar S, Motallebirad T, Dashtbin S, Mirzaei R, Khorshidi M, Esfahani BN. Molecular Typing of Streptococcus agalactiae-cMLSB Phenotype Isolates by Enterobacterial Repetitive Intergenic Consensus-PCR (ERIC-PCR) in Isfahan, Iran.  Infect Epidemiol Microbiol 2022; 8: 139-147.
18.    Kimura K, Suzuki S, Wachino J-i, Kurokawa H, Yamane K, Shibata N, et al. First molecular characterization of group B streptococci with reduced penicillin susceptibility. Antimicrob Agents Chemother 2008; 52: 2890-2897.
19.    Aboutorabi S, Rasooli Z, Pakniat H, Baloo F. Molecular characterization of prevalence, serotypes, virulence factors, and antibiotic resistance of Streptococcus agalactiae in a maternity hospital, Iran. Integr Cancer Sci Ther 2021; 8: 1-7.
20.    Dahesh S, Hensler ME, Van Sorge NM, Gertz Jr RE, Schrag S, Nizet V, et al. Point mutation in the group B streptococcal pbp2x gene conferring decreased susceptibility to β-lactam antibiotics. Antimicrob Agents Chemother2008; 52: 2915-2918.
21.    Nakamura PA, Schuab RBB, Neves FP, Pereira CF, de Paula GR, Barros RR. Antimicrobial resistance profiles and genetic characterisation of macrolide resistant isolates of Streptococcus agalactiae. Mem Inst Oswaldo Cruz 2011; 106: 119-122.
22.    Gizachew M, Tiruneh M, Moges F, Adefris M, Tigabu Z, Tessema B. Molecular characterization of Streptococcus agalactiae isolated from pregnant women and newborns at the University of Gondar Comprehensive Specialized Hospital, Northwest Ethiopia. BMC infect Dis 2020; 20: 1-9.
23.    Lu B, Chen X, Wang J, Wang D, Zeng J, Li Y, et al. Molecular characteristics and antimicrobial resistance in invasive and noninvasive Group B Streptococcus between 2008 and 2015 in China. Diagn Microbiol Infect Dis 2016; 86: 351-357.
24.    Moltó-García B, del Carmen Liébana-Martos M, Cuadros-Moronta E, Rodríguez-Granger J, Sampedro-Martínez A, Rosa-Fraile M, et al. Molecular characterization and antimicrobial susceptibility of hemolytic Streptococcus agalactiae from post-menopausal women. Maturitas 2016; 85: 5-10.
25.    Kao Y, Tsai M-H, Lai M-Y, Chu S-M, Huang H-R, Chiang M-C, et al. Emerging serotype III sequence type 17 group B streptococcus invasive infection in infants: the clinical characteristics and impacts on outcomes. BMC Infect Dis 2019; 19: 1-8.
26.    Moroi H, Kimura K, Kotani T, Tsuda H, Banno H, Jin W, et al. Isolation of group B Streptococcus with reduced β-lactam susceptibility from pregnant women. Emerg Microbes Infect 2019; 8: 2-7.
27.    Lo H-H, Nien H-H, Cheng Y-Y, Su F-Y. Antibiotic susceptibility pattern and erythromycin resistance mechanisms in beta-hemolytic group G Streptococcus dysgalactiae subspecies equisimilis isolates from central Taiwan. J Microbiol Immunol Infect 2015; 48: 613-617.
28.    Hraoui M, Boubaker IB-B, Rachdi M, Slim A, Redjeb SB. Macrolide and tetracycline resistance in clinical strains of Streptococcus agalactiae isolated in Tunisia. J Med Microbiol 2012; 61: 1109-1113.
29.    Cheng Z, Qu P, Ke P, Yang X, Zhou Q, Lan K, et al. Antibiotic resistance and molecular epidemiological characteristics of Streptococcus agalactiae isolated from pregnant women in Guangzhou, South China. Can J Infect Dis Med Microbiol 2020; 2020: 1-11.
30.    Björnsdóttir E, Martins E, Erlendsdóttir H, Haraldsson G, Melo-Cristino J, Kristinsson K, et al. Changing epidemiology of group B streptococcal infections among adults in Iceland: 1975–2014. Clin Microbiol Infect 2016; 22: 9-16.
31.    Meehan M, Cunney R, Cafferkey M. Molecular epidemiology of group B streptococci in Ireland reveals a diverse population with evidence of capsular switching. Eur J Clin Microbiol Infect Dis 2014; 33: 1155-1162.
32.    Jones N, Bohnsack JF, Takahashi S, Oliver KA, Chan MS, Kunst F, et al. Multilocus sequence typing system for group B streptococcus. J Clin Microbiol 2003; 41: 2530-2536.
33.    Huber CA, McOdimba F, Pflueger V, Daubenberger CA, Revathi G. Characterization of invasive and colonizing isolates of Streptococcus agalactiae in East African adults. J Clin Microbiol 2011; 49: 3652-3655.
34.    Wang S, Li L, Wu B, Wu W. Serotype, genotype, and clinical manifestations of Group B Streptococcus (GBS) isolated from neonates in China. Iran J Pediatr 2018; 28: 1-6.
35.    Luan SL, Granlund M, Sellin M, Lagergård T, Spratt BG, Norgren M. Multilocus sequence typing of Swedish invasive group B streptococcus isolates indicates a neonatally associated genetic lineage and capsule switching. J Clin Microbiol 2005; 43: 3727-3733.
36.    Khodaei F, Najafi M, Hasani A, Kalantar E, Sharifi E, Amini A, et al. Pilus–encoding islets in S. agalactiae and its association with antibacterial resistance and serotype distribution. Microb Pathog 2018; 116: 189-194.
37.    Madzivhandila M, Adrian PV, Cutland CL, Kuwanda L, Madhi SA, PoPS Trial Team. Distribution of pilus islands of group B streptococcus associated with maternal colonization and invasive disease in South Africa. J Med Microbiol 2013; 62: 249-253.