Comprehensive analysis of autophagy associated genes and immune infiltrates in cervical cancer

Document Type : Original Article

Authors

Department of Gynecologic Oncology, Guangxi Medical University Cancer Hospital Nanning, Guangxi Zhuang Autonomous Region 530021, PR China

10.22038/ijbms.2024.74431.16168

Abstract

Objective(s): Cervical cancer (CC) is the most common gynecological malignant tumor and the fourth leading cause of cancer-related death in women. The progression of CC is significantly affected by autophagy. Our objective was to use bioinformatics analysis to explore the expression, prognostic significance, and immune infiltration of autophagy-related genes in CC. 
Materials and Methods: We identified a set of autophagy-related differentially expressed genes (ARDEGs) from The Cancer Genome Atlas (TCGA)  and Gene Expression Omnibus (GEO) databases. ARDEGs were further validated by The Human Protein Atlas (HPA), GSE52903, and GSE39001 dataset. Hub genes were found by the STRING network and Cytoscape. We performed Gene Set Enrichment Analysis (GSEA), Gene ontology analysis (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, and immune infiltration analysis to further understand the functions of the hub genes. Kaplan-Meier (K-M) and receiver operating characteristic (ROC) were used to check the hub genes. 
Results: A total of 10 up-regulated (CXCR4, BAX, SPHK1,  EIF2AK2, TBK1, TNFSF10, ITGB4, CDKN2A, IL24, and BIRC5) and 19 down-regulated  (PINK1, ATG16L2, ATG4D, IKBKE, MLST8, MAPK3, ERBB2, ULK3, TP53INP2, MTMR14, BNIP3, FOS, CCL2, FAS, CAPNS1, HSPB8, PTK6, FKBP1B , and DNAJB1) ARDEGs were identified.  The ARDEGs were enriched in cell growth, apoptosis, human papillomavirus infection, and cytokine-mediated. Then, we found that low expression of MAPK3 was associated with poor prognosis in CC patients and was significantly enriched in immune pathways. In addition, the expression of MAPK3 was significantly positively correlated with the infiltration levels of macrophages, B cells, mast cell activation, and cancer-associated fibroblasts. Furthermore, MAPK3 was positively correlated with LGALS9, and negatively correlated with CTLA4 and CD40. 
Conclusion: Our results show that MAPK3 can be used as a new prognostic biomarker to predict the prognosis of patients with CC.

Keywords

Main Subjects


1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71:209–249.
2. Feng Q, Wang J, Cui N, Liu X, Wang H. Autophagy-related long non-coding RNA signature for potential prognostic biomarkers of patients with cervical cancer: a study based on public databases. Ann Transl Med 2021; 9:1668-1683.
3. Klionsky DJ, Petroni G, Amaravadi RK, Baehrecke EH, Ballabio A, Boya P, et al. Autophagy in major human diseases. EMBO J 2021; 40:1-63.
4. Lopez-Otín C, Kroemer G. Decelerating ageing and biological clocks by autophagy. Nat Rev Mol Cell Biol 2019; 20:385–386.
5. Venida A, Perera RM. Host control of tumor feeding: autophagy holds the key. Cell Metab 2019; 29:236–238.
6. Miao C-C, Hwang W, Chu L-Y, Yang L-H, Ha C-T, Chen P-Y, et al. LC3A-mediated autophagy regulates lung cancer cell plasticity. Autophagy 2022; 18:921–934.
7. yingBai Y, meiCheng Y, Wang W, Yang L, Yang Y. In vivo and in vitro studies of alloimperatorin induced autophagy in cervical cancer cells via reactive oxygen species pathway. Bioengineered 2022; 13:14299–14314.
8. Russell KL, Gorgulho CM, Allen A, Vakaki M, Wang Y, Facciabene A, et al. Inhibiting autophagy in renal cell cancer and the associated tumor endothelium. Cancer J 2019; 25:165–177.
9. Chao X, Qian H, Wang S, Fulte S, Ding W-X. Autophagy and liver cancer. Clin Mol Hepatol 2020; 26:606–617.
10. Huang X, Zhang G, Bai X, Liang T. Reviving the role of MET in liver cancer therapy and vaccination: an autophagic perspective. OncoImmunology 2020; 9:1818438-1818441.
11. Huang H, Han Q, Zheng H, Liu M, Shi S, Zhang T, et al. MAP4K4 mediates the SOX6-induced autophagy and reduces the chemosensitivity of cervical cancer. Cell Death Dis 2021; 13:13-27.
12. Zhang X, Sun Y, Cheng S, Yao Y, Hua X, Shi Y, et al. CDK6 increases glycolysis and suppresses autophagy by mTORC1-HK2 pathway activation in cervical cancer cells. Cell Cycle 2022; 21:984–1002.
13. Wu L, Shen B, Li J, Zhang H, Zhang K, Yang Y, et al. STAT3 exerts pro-tumor and anti-autophagy roles in cervical cancer. Diagn Pathol 2022; 17:13-23.
14. Colaprico A, Silva TC, Olsen C, Garofano L, Cava C, Garolini D, et al. TCGAbiolinks: an R/bioconductor package for integrative analysis of TCGA data. Nucleic Acids Res 2016; 44:71-82.
15. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 2015; 43:47-58.
16. den Boon JA, Pyeon D, Wang SS, Horswill M, Schiffman M, Sherman M, et al. Molecular transitions from papillomavirus infection to cervical precancer and cancer: role of stromal estrogen receptor signaling. Proc Natl Acad Sci U S A 2015; 112:3255-3264.
17. Zhai Y, Kuick R, Nan B, Ota I, Weiss SJ, Trimble CL, et al. Gene expression analysis of preinvasive and invasive cervical squamous cell carcinomas identifies HOXC10 as a key mediator of invasion. Cancer Res 2007; 67:10163–10172.
18. Medina-Martinez I, Barrón V, Roman-Bassaure E, Juárez-Torres E, Guardado-Estrada M, Espinosa AM, et al. Impact of gene dosage on gene expression, biological processes and survival in cervical cancer: a genome-wide follow-up study. PloS One 2014; 9:1-23.
19. Espinosa AM, Alfaro A, Roman-Basaure E, Guardado-Estrada M, Palma Í, Serralde C, et al. Mitosis is a source of potential markers for screening and survival and therapeutic targets in cervical cancer. PloS One 2013; 8:1-21.
20. Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, Tomashevsky M, et al. NCBI GEO: archive for functional genomics data sets--update. Nucleic Acids Res 2013; 41:991-995.
21. Davis S, Meltzer PS. GEOquery: a bridge between the gene expression omnibus (GEO) and bioconductor. Bioinforma Oxf Engl 2007; 23:1846–1847.
22. Wang N-N, Dong J, Zhang L, Ouyang D, Cheng Y, Chen AF, et al. HAMdb: a database of human autophagy modulators with specific pathway and disease information. J Cheminformatics 2018; 10:34-42.
23. Gu Z, Eils R, Schlesner M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 2016; 32:2847–2849.
24. Gene Ontology Consortium. Gene ontology consortium: going forward. Nucleic Acids Res 2015; 43:1049-1056.
25. Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 2000; 28:27-30.
26. Yu G, Wang L-G, Han Y, He Q-Y. Cluster profiler: an R package for comparing biological themes among gene clusters. Omics J Integr Biol 2012; 16:284–287.
27. Nagy Á, Munkácsy G, Győrffy B. Pancancer survival analysis of cancer hallmark genes. Sci Rep 2021; 11:6047-6057.
28. Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A, et al. Proteomics. Tissue-based map of the human proteome. Science 2015; 347:1260419-1260430.
29. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 2005; 102:15545–15550.
30. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 2014; 15:550-561.
31. Hänzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics 2013; 14:7-22.
32. Bindea G, Mlecnik B, Tosolini M, Kirilovsky A, Waldner M, Obenauf AC, et al. Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. Immunity 2013; 39:782–795.
33. White E. Deconvoluting the context-dependent role for autophagy in cancer. Nat Rev Cancer 2012; 12:401–410.
34. Huang H, Han Q, Zheng H, Liu M, Shi S, Zhang T, et al. MAP4K4 mediates the SOX6-induced autophagy and reduces the chemosensitivity of cervical cancer. Cell Death Dis 2021; 13:13-27.
35. Zhang L, Liu X, Song L, Zhai H, Chang C. MAP7 promotes migration and invasion and progression of human cervical cancer through modulating the autophagy. Cancer Cell Int 2020; 20:17-25.
36. Wu L, Shen B, Li J, Zhang H, Zhang K, Yang Y, et al. STAT3 exerts pro-tumor and anti-autophagy roles in cervical cancer. Diagn Pathol 2022; 17:13-23.
37. Yang Y, Wang Q, Song D, Zen R, Zhang L, Wang Y, et al. Lysosomal dysfunction and autophagy blockade contribute to autophagy-related cancer suppressing peptide-induced cytotoxic death of cervical cancer cells through the AMPK/mTOR pathway. J Exp Clin Cancer Res CR 2020; 39:197-215.
38. Wu G, Long Y, Lu Y, Feng Y, Yang X, Xu X, et al. Kindlin‑2 suppresses cervical cancer cell migration through AKT/mTOR‑mediated autophagy induction. Oncol Rep 2020; 44:69–76.
39. Liu F, Chang L, Hu J. Activating transcription factor 6 regulated cell growth, migration and inhibiteds cell apoptosis and autophagy via MAPK pathway in cervical cancer. J Reprod Immunol 2020; 139:1-6.
40. Xiang W, Zhang R-J, Jin G-L, Tian L, Cheng F, Wang J-Z, et al. RCE‑4, a potential anti‑cervical cancer drug isolated from Reineckia carnea, induces autophagy via the dual blockade of PI3K and ERK pathways in cervical cancer CaSki cells. Int J Mol Med 2020; 45:245–254.
41. Slattery ML, Herrick JS, Torres-Mejia G, John EM, Giuliano AR, Hines LM, et al. Genetic variants in interleukin genes are associated with breast cancer risk and survival in a genetically admixed population: the breast cancer health disparities study. Carcinogenesis 2014; 35:1750–1759.
42. Omrane I, Medimegh I, Baroudi O, Ayari H, Bedhiafi W, Stambouli N, et al. Involvement of IL17A, IL17F and IL23R polymorphisms in colorectal cancer therapy. PloS One 2015; 10:1-12.
43. Xu B, Guenther JF, Pociask DA, Wang Y, Kolls JK, You Z, et al. Promotion of lung tumor growth by interleukin-17. Am J Physiol Lung Cell Mol Physiol 2014; 307:497-508.
44. Lv Q, Wu K, Liu F, Wu W, Chen Y, Zhang W. Interleukin‑17A and heparanase promote angiogenesis and cell proliferation and invasion in cervical cancer. Int J Oncol 2018; 53:1809–1817.
45. Roskoski R. Targeting ERK1/2 protein-serine/threonine kinases in human cancers. Pharmacol Res 2019; 142:151–168.
46. Wang L-T, Liu K-Y, Chiou S-S, Huang S-K, Hsu S-H, Wang S-N. Phosphorylation of intestine-specific homeobox by ERK1 modulates oncogenic activity and sorafenib resistance. Cancer Lett 2021; 520:160–171.
47. Akula SM, Abrams SL, Steelman LS, Emma MR, Augello G, Cusimano A, et al. RAS/RAF/MEK/ERK, PI3K/PTEN/AKT/mTORC1 and TP53 pathways and regulatory miRs as therapeutic targets in hepatocellular carcinoma. Expert Opin Ther Targets 2019; 23:915–929.
48. Hu Y, Lu Y, Xing F, Hsu W. FGFR1/MAPK-directed brachyury activation drives PD-L1-mediated immune evasion to promote lung cancer progression. Cancer Lett 2022; 547:215867.
49. Li W, Qian C, Ma F, Liu M, Sun X, Liu X, et al. MAPK/ERK-CBP-RFPL-3 mediates adipose-derived stem cell-induced tumor growth in breast cancer cells by activating telomerase reverse transcriptase expression. Stem Cells Int 2022; 2022:1-14.
50. Kashatus JA, Nascimento A, Myers LJ, Sher A, Byrne FL, Hoehn KL, et al. Erk2 phosphorylation of Drp1 promotes mitochondrial fission and MAPK-driven tumor growth. Mol Cell 2015; 57:537–551.
51. Mele L, del Vecchio V, Liccardo D, Prisco C, Schwerdtfeger M, Robinson N, et al. The role of autophagy in resistance to targeted therapies. Cancer Treat Rev 2020; 88:102043-102057.
52. Gilbert CJ, Longenecker JZ, Accornero F. ERK1/2: an integrator of signals that alters cardiac homeostasis and growth. Biology 2021; 10:346-365.
53. Pennanen P, Kallionpää RA, Peltonen S, Nissinen L, Kähäri V-M, Heervä E, et al. Signaling pathways in human osteoclasts differentiation: ERK1/2 as a key player. Mol Biol Rep 2021; 48:1243–1254.
54. Du Y, Zhang J, Meng Y, Huang M, Yan W, Wu Z. MicroRNA-143 targets MAPK3 to regulate the proliferation and bone metastasis of human breast cancer cells. AMB Express 2020; 10:134-142.
55. Pramanik KK, Mishra R. ERK-mediated upregulation of matrix metalloproteinase-2 promotes the invasiveness in human oral squamous cell carcinoma (OSCC). Exp Cell Res 2022; 411:112984.
56. Song X, Wang Y, Du H, Fan Y, Yang X, Wang X, et al. Overexpression of HepaCAM inhibits cell viability and motility through suppressing nucleus translocation of androgen receptor and ERK signaling in prostate cancer. Prostate 2014; 74:1023–1033.
57. Gavathiotis E, Reyna DE, Davis ML, Bird GH, Walensky LD. BH3-triggered structural reorganization drives the activation of proapoptotic BAX. Mol Cell 2010; 40:481–492.
58. Bleicken S, Landeta O, Landajuela A, Basañez G, García-Sáez AJ. Proapoptotic Bax and Bak proteins form stable protein-permeable pores of tunable size. J Biol Chem 2013; 288:33241–33252.
59. Metur SP, Klionsky DJ. Adaptive immunity at the crossroads of autophagy and metabolism. Cell Mol Immunol 2021; 18:1096–1105.
60. Deretic V. Autophagy in inflammation, infection, and immunometabolism. Immunity 2021; 54:437–453.
61. Havel JJ, Chowell D, Chan TA. The evolving landscape of biomarkers for checkpoint inhibitor immunotherapy. Nat Rev Cancer 2019; 19:133–150.
62. Yao H, Jiang X, Fu H, Yang Y, Jin Q, Zhang W, et al. Exploration of the immune-related long noncoding RNA prognostic signature and inflammatory microenvironment for cervical cancer. Front Pharmacol 2022; 13:1-16.
63. Chen Z, Zhu Y, Du R, Pang N, Zhang F, Dong D, et al. Role of regulatory B cells in the progression of cervical cancer. Mediators Inflamm 2019; 2019:1–8.