Autophagy inhibitor 3-methyladenine attenuates renal injury in streptozotocin-induced diabetic mice

Document Type : Original Article

Authors

1 Department of Clinical Laboratory, Bishan Hospital of Chongqing Medical University, Chongqing 402760, China

2 Health Science Center, Yangtze University, Jingzhou 434023, China

3 Department of Immunology, Medical School of Yangtze University, Jingzhou 434023, China

4 Clinical Molecular Immunology Center, Medical School of Yangtze University, Jingzhou 434023, China

5 Department of Human Anatomy, Medical School of Yangtze University, Jingzhou 434023, China

10.22038/ijbms.2024.71378.15518

Abstract

Objective(s): To investigate whether 3-methyladenine (3-MA) can protect the kidney of streptozotocin (STZ) - induced diabetes mice, and explore its possible mechanism. 
Materials and Methods: STZ was used to induce diabetes in C57BL/6J mice. The mice were divided into normal control group (NC), diabetes group (DM), and diabetes+3-MA intervention group (DM+3-MA). Blood glucose, water consumption, and body weight were recorded weekly. At the end of the 6th week of drug treatment, 24-hour urine was collected. Blood and kidneys were collected for PAS staining to evaluate the degree of renal injury. Sirius red staining was used to assess collagen deposition. Blood urea nitrogen (BUN), serum creatinine, and 24-hour urine albumin were used to evaluate renal function. Western blot was used to detect fibrosis-related protein, inflammatory mediators, high mobility group box 1 (HMGB1)/NF-κB signal pathway molecule, vascular endothelial growth factor (VEGF), and podocin, and immunohistochemistry (IHC) was used to detect the expression and localization of autophagy-related protein and fibronectin.
Results: Compared with the kidney of normal control mice, the kidney of diabetes control mice was more pale and hypertrophic. Hyperglycemia induces renal autophagy and activates the HMGB1/NF-κB signal pathway, leading to the increase of inflammatory mediators, extracellular matrix (ECM) deposition, and proteinuria in the kidney. In diabetic mice treated with 3-MA, blood glucose decreased, autophagy and HMGB1/NF-κB signaling pathways in the kidneys were inhibited, and proteinuria, renal hypertrophy, inflammation, and fibrosis were improved. 
Conclusion: 3-MA can attenuate renal injury in STZ-induced diabetic mice through inhibition of autophagy and HMGB1/NF-κB signaling pathway.

Keywords

Main Subjects


1. Mallipattu SK, He JC. The podocyte as a direct target for treatment of glomerular disease? Am J Physiol Renal Physiol 2016; 311:F46-51. 
2. Shemesh II, Rozen-Zvi B, Kalechman Y, Gafter U, Sredni B. AS101 prevents diabetic nephropathy progression and mesangial cell dysfunction: Regulation of the AKT downstream pathway. PLoS One 2014; 9:e114287-114305. 
3. Tung CW, Hsu YC, Shih YH, Chang PJ, Lin CL. Glomerular mesangial cell and podocyte injuries in diabetic nephropathy. Nephrology 2018; 23:32-37. 
4. Ma J, Chadban SJ, Zhao CY, Chen X, Kwan T, Panchapakesan U, et al. TLR4 activation promotes podocyte injury and interstitial fibrosis in diabetic nephropathy. PLoS One 2014; 9:e97985-97996. 
5. Lin M, Yiu WH, Wu HJ, Chan LYY, Leung JCK, Au WS, et al. Toll-like receptor 4 promotes tubular inflammation in diabetic nephropathy. J Am Soc Nephrol 2012; 23:86-102. 
6. Ma J, Wu H, Zhao CY, Panchapakesan U, Pollock C, Chadban SJ. Requirement for TLR2 in the development of albuminuria, inflammation and fibrosis in experimental diabetic nephropathy. Int J Clin Exp Pathol 2014; 7:481-495. 
7. Dikic I, Elazar Z. Mechanism and medical implications of mammalian autophagy. Nat Rev Mol Cell Biol 2018; 19:349-364. 
8. Klionsky DJ, Abdel-Aziz AK, Abdelfatah S, Abdellatif M, Abdoli A, Abel S, et al. Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1. Autophagy 2021;17:1-382. 
9. Parzych KR, Klionsky DJ. An overview of autophagy: Morphology, mechanism, and regulation. Antioxid Redox Signal 2014; 20:460-473. 
10. Bo Q, Shen M, Xiao M, Liang J, Zhai Y, Zhu H, et al. 3-Methyladenine alleviates experimental subretinal fibrosis by inhibiting macrophages and M2 polarization through the PI3K/Akt pathway. J Ocul Pharmacol Ther 2020; 36:618-628. 
11. Zhao Z, Hu Z, Zeng R, Yao Y. HMGB1 in kidney diseases. Life Sci 2020; 259:118203. 
12. Guo Y, Xiao Z, Wang Y, Yao W, Liao S, Yu B, et al. Sodium butyrate ameliorates streptozotocin-induced type 1 diabetes in mice by inhibiting the HMGB1 expression. Front Endocrinol (Lausanne) 2018; 9:630-638. 
13. Wang B, Yang H, Fan Y, Yang Y, Cao W, Jia Y, et al. 3-Methyladenine ameliorates liver fibrosis through autophagy regulated by the NF-κB signaling pathways on hepatic stellate cell. Oncotarget 2017; 8:107603-107611. 
14. Ding D, Xu S, Zhang H, Zhao W, Zhang X, Jiang Y, et al. 3-Methyladenine and dexmedetomidine reverse lipopolysaccharide-induced acute lung injury through the inhibition of inflammation and autophagy. Exp Ther Med 2018; 15:3516-3522. 
15. Jung J, Choi H, Son E-D, Kim H. 3-Methyladenine inhibits Procollagen-1 and fibronectin expression in dermal fibroblasts independent of autophagy. Curr Mol Med 2021; 20:741-750. 
16. Zou M, Wang F, Gao R, Wu J, Ou Y, Chen X, et al. Autophagy inhibition of hsa-miR-19a-3p/19b-3p by targeting TGF-β R II during TGF-β1-induced fibrogenesis in human cardiac fibroblasts. Sci Rep 2016; 6:24747-24761. 
17. He S, Zhou Q, Luo B, Chen B, Li L, Yan F. Chloroquine and 3-Methyladenine attenuates periodontal inflammation and bone loss in experimental periodontitis. Inflammation 2020;43:220-230. 
18. Bao J, Shi Y, Tao M, Liu N, Zhuang S, Yuan W. Pharmacological inhibition of autophagy by 3-MA attenuates hyperuricemic nephropathy. Clin Sci (Lond) 2018; 132:2299-2322. 
19. Shi Y, Tao M, Ma X, Hu Y, Huang G, Qiu A, et al. Delayed treatment with an autophagy inhibitor 3-MA alleviates the progression of hyperuricemic nephropathy. Cell Death Dis 2020; 11:467-482. 
20. Ren H-W, Yu W, Wang Y-N, Zhang X-Y, Song S-Q, Gong S-Y, et al. Effects of autophagy inhibitor 3-methyladenine on a diabetic mice model. Int J Ophthalmol 2023; 16:1456-1464. 
21. Liu B, He X, Li S, Xu B, Birnbaumer L, Liao Y. Deletion of diacylglycerol-responsive TRPC genes attenuates diabetic nephropathy by inhibiting activation of the TGFβ1 signaling pathway. Am J Transl Res 2017; 9:5619-5630. 
22. Shanak S, Saad B, Zaid H. Metabolic and epigenetic action mechanisms of antidiabetic medicinal plants. Evid Based Complement Alternat Med 2019; 2019:3583067-3583084. 
23. Tufro A, Veron D. VEGF and podocytes in diabetic nephropathy. Semin Nephrol 2012; 32:385-393. 
24. Benetti A, Martins FL, Sene LB, Shimizu MHM, Seguro AC, Luchi WM, et al. Urinary DPP4 correlates with renal dysfunction, and DPP4 inhibition protects against the reduction in megalin and podocin expression in experimental CKD. Am J Physiol Renal Physiol 2021; 320:F285-F296. 
25. Tang G, Li S, Zhang C, Chen H, Wang N, Feng Y. Clinical efficacies, underlying mechanisms and molecular targets of Chinese medicines for diabetic nephropathy treatment and management. Acta Pharm Sin B 2021; 11:2749-2767. 
26. Ma T-T, Meng X-M. TGF-β/Smad and renal fibrosis. Adv Exp Med Biol 2019; 1165:347-364. 
27. Xu B-H, Sheng J, You Y-K, Huang X-R, Ma RCW, Wang Q, et al. Deletion of Smad3 prevents renal fibrosis and inflammation in type 2 diabetic nephropathy. Metabolism 2020; 103:154013. 
28. Calle P, Hotter G. Macrophage phenotype and fibrosis in diabetic nephropathy. Int J Mol Sci 2020; 21:E2806-2819. 
29. Rayego-Mateos S, Morgado-Pascual JL, Opazo-Ríos L, Guerrero-Hue M, García-Caballero C, Vázquez-Carballo C, et al. Pathogenic pathways and therapeutic approaches targeting inflammation in diabetic nephropathy. Int J Mol Sci 2020; 21:E3798-3840. 
30. Wada J, Makino H. Inflammation and the pathogenesis of diabetic nephropathy. Clin Sci (Lond) 2013; 124:139-152. 
31. Ashrafi Jigheh Z, Ghorbani Haghjo A, Argani H, Roshangar L, Rashtchizadeh N, Sanajou D, et al. Empagliflozin alleviates renal inflammation and oxidative stress in streptozotocin-induced diabetic rats partly by repressing HMGB1-TLR4 receptor axis. Iran J Basic Med Sci 2019; 4:384-390. 
32. Wu H, Chen Z, Xie J, Kang L-N, Wang L, Xu B. High mobility group Box-1: A missing link between diabetes and its complications. Mediators Inflamm 2016; 2016:1-11. 
33. Chen X, Ma J, Kwan T, Stribos EGD, Messchendorp AL, Loh YW, et al. Blockade of HMGB1 attenuates diabetic nephropathy in mice. Sci Rep 2018; 8:8319-8331. 
34. Zhang Y. MiR-92d-3p suppresses the progression of diabetic nephropathy renal fibrosis by inhibiting the C3/HMGB1/TGF-β1 pathway. Biosci Rep 2021; 41:BSR20203131-20203143. 
35. Thomas MC, Brownlee M, Susztak K, Sharma K, Jandeleit-Dahm KAM, Zoungas S, et al. Diabetic kidney disease. Nat Rev Dis Primers 2015; 1:15018-15063. 
36. Stefan G, Stancu S, Zugravu A, Petre N, Mandache E, Mircescu G. Histologic predictors of renal outcome in diabetic nephropathy: Beyond renal pathology society classification. Medicine (Baltimore) 2019; 98:e16333-16339. 
37. Lei L, Mao Y, Meng D, Zhang X, Cui L, Huo Y, et al. Percentage of circulating CD8+ T lymphocytes is associated with albuminuria in type 2 diabetes mellitus. Exp Clin Endocrinol Diabetes 2014; 122:27-30. 
38. El Mesallamy HO, Ahmed HH, Bassyouni AA, Ahmed AS. Clinical significance of inflammatory and fibrogenic cytokines in diabetic nephropathy. Clin Biochem 2012; 45:646-650. 
39. Sanchez AP, Sharma K. Transcription factors in the pathogenesis of diabetic nephropathy. Expert Rev Mol Med 2009; 11:e13. 
40. Pérez-Morales RE, Del Pino MD, Valdivielso JM, Ortiz A, Mora-Fernández C, Navarro-González JF. Inflammation in diabetic kidney disease. Nephron 2019; 143:12-16. 
41. Lee HS. Paracrine role for TGF-β-induced CTGF and VEGF in mesangial matrix expansion in progressive glomerular disease. Histol Histopathol 2012; 27:1131-1141. 
42. Au AK, Aneja RK, Bayır H, Bell MJ, Janesko-Feldman K, Kochanek PM, et al. Autophagy biomarkers Beclin 1 and p62 are increased in cerebrospinal fluid after traumatic brain injury. Neurocrit Care 2017; 26:348-355. 
43. Rubinstein AD, Kimchi A. Life in the balance - a mechanistic view of the crosstalk between autophagy and apoptosis. J Cell Sci 2012; 125:5259-5268. 
44. Maejima Y, Isobe M, Sadoshima J. Regulation of autophagy by Beclin 1 in the heart. J Mol Cell Cardiol 2016; 95:19-25. 
45. Mariño G, Niso-Santano M, Baehrecke EH, Kroemer G. Self-consumption: The interplay of autophagy and apoptosis. Nat Rev Mol Cell Biol 2014; 15:81-94. 
46. Cheng M, Liu H, Zhang D, Liu Y, Wang C, Liu F, et al. HMGB1 enhances the AGE-Induced expression of CTGF and TGF-β via RAGE-dependent signaling in renal tubular epithelial cells. Am J Nephrol 2015; 41:257-266. 
47. Chen H, Li N, Zhan X, Zheng T, Huang X, Chen Q, et al. Capsaicin protects against lipopolysaccharide-induced acute lung injury through the HMGB1/NF-κB and PI3K/AKT/mTOR Pathways. J Inflamm Res 2021; 14:5291-5304. 
48. Wang Y, Zhong J, Zhang X, Liu Z, Yang Y, Gong Q, et al. The role of HMGB1 in the pathogenesis of type 2 diabetes. J Diabetes Res 2016; 2016:2543268-2543278. 
49. Lee W, Yuseok O, Yang S, Lee B-S, Lee J-H, Park EK, et al. JH-4 reduces HMGB1-mediated septic responses and improves survival rate in septic mice. J Cell Biochem 2019; 120:6277-6289. 
50. Personnaz J, Piccolo E, Branchereau M, Filliol A, Paccoud R, Moreau E, et al. Macrophage-derived HMGB1 is dispensable for tissue fibrogenesis. FASEB Bioadv 2019; 1:227-245. 
51. Cheng M, Liu H, Zhang D, Liu Y, Wang C, Liu F, et al. HMGB1 enhances the AGE-induced expression of CTGF and TGF-β via RAGE-dependent signaling in renal tubular epithelial cells. Am J Nephrol 2015; 41:257-266.