Inhibition of Pseudomonas aeruginosa biofilm formation by 2,2’-bipyridyl, lipoic, kojic and picolinic acids

Document Type: Original Article

Authors

Department of Biology, Suleyman Demirel University, 32260 Isparta, Türkiye

Abstract

Objective(s):The inhibitory effects of iron chelators, and FeCl3 chelation on biofilm formation and swarming motility were investigated against an opportunistic human pathogen Pseudomonas aeruginosa.
Materials and Methods:The inhibitory activity of 2,2’-bipyridyl, lipoic acid, kojic acid and picolinic acidonbiofilm formation of P. aeruginosa strain PAO1 and three clinical isolates (P. aeruginosa  PAK01,P. aeruginosa PAK02 and P. aeruginosa PAK03) were investigated, based on crystal violet assay, and swarming motility test.
Results:The kojic, lipoic and picolinic acid inhibited biofilm formation by 5-33% in all tested P. aeruginosa isolates. When chelated iron was added, biofilm inhibition rates were determined to be 39-57%. Among the tested chelators against P. aeruginosa, lipoic acid (84%) and kojic acid (68%) presented the highest inhibition of swarming motility. This is the first study to report the inhibitory effect of lipoic acid on biofilm formation and swarming motility of P. aeruginosa.
Conclusion: It is considered that lipoic and picolinic acids can serve as alternatives for the treatment of the P. aeruginosa infections by inhibiting biofilm formation.
 

Keywords


1. Van Delden C, Iglewski BH. Cell-to-cell signaling and Pseudomonas aeruginosa infection. Emerg Infect Dis 1998; 4:551-560.

2. Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a commoncause of persistent infections. Science 1999; 284:1318-1322.

3. Parsek MR, Singh PK. Bacterial biofilms: an emerging link to disease pathogenesis. Ann Rev Microbiol 2003; 57:677-701.

4. Banin E, Vasil ML, Greenberg EP. Iron and Pseudomonas aeruginosa biofilm formation. Proc Natl Acad Sci USA 2005; 102:11076-11081.

5. Oglesby AG, Farrow JM, Lee JH, Tomaras AP, Greenberg EP, Pesci EC, et al. The Influence of iron on Pseudomonas aeruginosa physiology. J Biol Chem 2008; 283:15558-15567.

6. Braud A, Hannauer M, Mislin GLA, and Schalk IJ. The Pseudomonas aeruginosa Pyochelini iron uptake pathway and its metal specificity. J Bacteriol 2009; 191:3517-3525.

7. Bjorn MJ, Sokol PA, Iglewski BH. Influence of iron on yields of extracellular products in Pseudomonas aeruginosa cultures. J Bacteriol 1979; 138:193-200.

8. Johnson MK, Boese-Marrazzo D. Production and properties of heat-stable extracellular hemolysin from Pseudomonas aeruginosa. Infect Immun 1980; 29:1028-1033.

9. Pearson JP, Pesci EC, and Iglewski BH. Roles of Pseudomonas aeruginosa las and rhl quorum sensing systems in control of elastase and rhamnolipid biosynthesis genes. J Bacteriol 1997; 179:5756-5767.

10. Steindler L, Bertani I, De Sordi L, Schwager S, Eberl, Venturi V. LasI/R and RhlI/R quorum sensing in a strain of Pseudomonas aeruginosa beneficial to plants. Appl Environ Microbiol 2009; 75:5131-5140.

11. Ochsner UA, Reiser J. Autoinducer-mediated regulation of rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. Proc Natl Acad Sci USA 1995; 92:6424-6428.

12. Brint JM, Ohman DE. Synthesis of multiple exoproducts in Pseudomonas aeruginosa is under the control of RhlR-RhlI, another set of regulators in strain PAO1 with homology to the autoinducer-responsive luxR-luxI family. J Bacteriol 1995; 177:7155-7163.

13. Davies DG, Parsek MR, Pearson, JP, Iglewski, BH, Costerton, JW, Greenberg, EP. The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 1998; 280:295–298.

14. Kociolek MG. Quorum-sensing inhibitors and biofilms. Antiinfect Agents J Med Chem(Formerly Current Medicinal Chemistry-Anti-Infective Agents)  2009; 8:315-326.

15. Lewis K. Persister cells, dormancy and infectious disease. Nat Rev Microbiol 2007; 5:48-56.

16. Andrews SC, Robinson AK, Rodriguez-Quinones F. Bacterial iron homeostasis. FEMS Microbiol Rev 2003; 27:215-237.

17. Singh PK, Parsek MR, Greenberg EP, Welsh MJ. A component of innate immunity prevents bacterial biofilm development. Nature 2002; 417:552-555.

18. Poole K, McKay GA. Iron acquisition and its control in Pseudomonas aeruginosa: Many roads lead to rome. Front Biosci 2003; 8:661-686.

19. Singh PK. Iron sequestration by human lactoferrin stimulates P. aeruginosa surface motility and blocks biofilm formation. Biometals 2004; 17:267-270.

20. Bertulutti F, Morea C, Battistoni A, Sarli S, Cipriani P, Superti F, Ammendolia MG, Valenti P. Iron availability influences aggregation, biofilm, adhesion and invasion of Pseudomonas aeruginosa and Burkholderia cenocepacia. Int J Immunopathol Pharmocol 2005; 18:661-670.

21. Reid DW, Withers NJ, Francis L, Wilson JW, Kotsimbos TC. Iron deficiency in Cytisc Fibrosis relationship to lung disease severity and chronic Pseudomonas aeruginosa infection. Chest 2002; 121:48-54.

22. Musk DJ, Banko DA, Hergenrother PJ. Iron salts perturb biofilm formation and disrupt existing biofilms of Pseudomonas aeruginosa. Chem Biol 2005; 12:789–796.

23. Musk DJ, Hergenrother PJ. Chelated iron sources are inhibitors of Pseudomonas aeruginosa biofilms and distribute efficiently in an in vitro model of drug delivery to the human lung. J Appl Microbiol 2008; 105:380-388.

24. O’Toole GA, Kolter R. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 1998; 30:295-304.

25. Rashid MH, Kornberg A. Inorganic polyphosphate is needed for swimming, swarming, and twitching motilities of Pseudomonas aeruginosa. Proc Natl Acad Sci USA 2000; 97:4885-4890.

26. Chen X, Stewart PS.  Role of electrostatic interactions in cohesion of bacterial biofilms. Appl Microbiol Biotechnol 2002; 59:718–720.

27. Raad I, Kassar R, Ghannam D, Chaftari AM, Hachem R, Jiang Y. Management of the catheter in documented catheter-related coagulase-negative staphylococcal bacteremia: remove or retain? Clin Infect Dis 2009; 49:1187-1194.

28. Moreau-Marquis S, O'Toole GA, Stanton BA. Tobramycin and FDA-approved iron chelators eliminate Pseudomonas aeruginosa biofilms on cystic fibrosis cells. Am J Resp Cell Mol 2009; 41:305-313.

29. Kaneko Y, Thoendel M, Olakanmi O, Britigan BE, Singh PK. The transition metal gallium disrupts Pseudomonas aeruginosa iron metabolism and has antimicrobial and antibiofilm activity. J Clin Invest 2007; 117:877-888.

30. Banin E, Lozinski A, Brady KM, Berenshtein E, Butterfield PW, Moshe M, et al. The potential of desferrioxaminegallium as an anti-Pseudomonas therapeutic agent. Proc Natl Acad Sci USA 2008; 105:16761–16765.

31. Mah Thien-Fah C, O'Toole GA. Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 2001; 9:34-39.