Administration of orexin receptor 1 antagonist into the rostral ventromedial medulla increased swim stress-induced antinociception in rat

Document Type: Original Article


1 Physiology-Pharmacology Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran

2 Faculty of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran

3 Department of Basic Science and Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran


Objective(s): Intracerebroventricular injection of orexin-A (hypocretin-1) antagonist has been shown to inhibit stress-induced analgesia. However the locations of central sites that may mediate these effects have not been totally demonstrated. This study was performed to investigate the role of rostral ventromedial medulla (RVM) orexin receptor 1 in stress-induced analgesia (SIA).
Materials and Methods: Forced swim stress in water was employed to adult male rats (200-250 g). Nociceptive responses were measured by formalin test (50 µl injection of formalin 2% subcutaneously into hind paw) and, pain related behaviors were monitored for 90 min following intra-microinjection of SB-334867 (orexin receptor 1 antagonist) into RVM.
Results: Exposure to swimming stress test after administration of SB-334867 into RVM significantly reduces the formalin-induced nociceptive behaviors in phase1, interphase, and phase 2 in rats.
Conclusion: The result demonstrated the involvement of OXR1 in antinociceptive behaviors induced by swim stress in RVM.


1. Butler RK, Finn DP. Stress-induced analgesia. Prog Neurobiol 2009; 88:184-202.

2. Bodnar RJ, Kelly DD, Brutus M, Glusman M. Stress-induced analgesia: neural and hormonal determinants. Neurosci Biobehav Rev 1980; 4:87-100.

3.Ford GK, Finn DP. Clinical correlates of stress-induced analgesia: evidence from pharmacological studies. Pain 2008; 140:3-7.

4. Akil H, Young E, Walker JM, Watson SJ. The many possible roles of opioids and related peptides in stress-induced analgesia. Ann N Y Acad Sci 1986; 467:140-153.

5. Lewis JW, Cannon JT, Liebeskind JC. Opioid and nonopioid mechanisms of stress analgesia. Science 1980; 208:623-625.

6. Watkins LR, Mayer DJ. Organization of endogenous opiate and nonopiate pain control systems. Science 1982; 216:1185-1192.

7. Ferguson AV, Samson WK. The orexin/hypocretin system: a critical regulator of neuroendocrine and autonomic function. Front Neuroendocrinol 2003; 24:141-150.

8. Sakurai T. Roles of orexin/hypocretin in regulation of sleep/wakefulness and energy homeostasis. Sleep Med Rev 2005; 9:231-241.

9. Samson WK, Taylor MM, Ferguson AV. Non-sleep effects of hypocretin/orexin. Sleep Med Rev 2005; 9:243-252.

10. Siegel JM. The narcoleptic borderland. Sleep Med 2003; 4:3-4.

11. Sofiabadi M, Nazemi S, Erami E, Azhdari-Zarmehri H. Role of orexinergic system in the effects of morphine on food and water intake in male rat. Koomesh 2014;15:380-387.

12. Azhdari-Zarmehri H, Mohammad-Zadeh M, Shabani M. The role of hypocretin/orexin in stress-induced analgesia. Journal of Kerman University of Medical Sciences 2015;22:205-217.

13- Azhdari-Zarmehri H, Semnanian S, Fathollahi Y. Orexin A modulates rostral ventromedial medulla neuronal activity of rat in vitro. Abstracts of the 33rd Annual Meeting of the Japan Neuroscience Society (Neuro 2010)

14. Shabani M, Mohammad-Zadeh M, Azhdari-Zarmehri H. Orexin (hypocretin): A multi-functional hypothalamic peptide. Koomesh 2014;15:275-281.

15. Azhdari-Zarmehri H, Semnanian S, Fathollahi Y, Pakdel FG. Tail flick modification of orexin-A induced changes of electrophysiological parameters in the rostral ventromedial medulla. Cell J 2014;16:131-140.

16. Nazemi S, Azhdari-Zarmehri H, Haghdoost-Yazdi H. Role of orexin in the tolerance and physical dependence to morphine. JBUMS 2014;16:54-61.

17. Abadi MS, Oranjaghi NH, Ghasemi E, Esmaeili MH, Haghdoost-Yazdi H, Erami E, et al. Assesment of orexin receptor 1 in stress attenuated nociceptive behaviours in formalin test. Physiol and Pharmacol 2011; 15:395-402.

18. Azhdari-Zarmehri H, Semnanian S, Fathollahi Y. Orexin-A microinjection into the rostral ventromedial medulla causes antinociception on formalin test. Pharmacol Biochem Behav 2014; 122:286-290.

19. Ghasemi E, Heidari-Oranjaghi N, Azhdari-Zarmehri H, Sadegh M. Repeated injections of orexin-A developed behavioral tolerance to its analgesic effects in rats. Iran J Basic Med Sci 2015;18:1183-11888.

20. Peyron C, Tighe DK, van den Pol AN, de Lecea L, Heller HC, Sutcliffe JG, et al. Neurons containing hypocretin (orexin) project to multiple neuronal systems. J Neurosci 1998; 18:9996-10015.

21. Trivedi P, Yu H, MacNeil DJ, Van der Ploeg LH, Guan XM. Distribution of orexin receptor mRNA in the rat brain. FEBS Lett 1998; 438:71-75.

22. Heinricher MM, Barbaro NM, Fields HL. Putative nociceptive modulating neurons in the rostral ventromedial medulla of the rat: firing of on- and off-cells is related to nociceptive responsiveness. Somatosens Mot Res 1989; 6:427-439.

23. Kim SJ, Calejesan AA, Zhuo M. Activation of brainstem metabotropic glutamate receptors inhibits spinal nociception in adult rats. Pharmacol Biochem Behav 2002; 73:429-437.

24. Da Silva LF, Desantana JM, Sluka KA. Activation of NMDA receptors in the brainstem, rostral ventromedial medulla, and nucleus reticularis gigantocellularis mediates mechanical hyperalgesia produced by repeated intramuscular injections of acidic saline in rats. J Pain 2009; 11:378-387.

25. Heinricher MM, Kaplan HJ. GABA-mediated inhibition in rostral ventromedial medulla: role in nociceptive modulation in the lightly anesthetized rat. Pain 1991; 47:105-113.

26. Paxinos,G, Watson, C. The rat brain in stereotaxic coordinates. New York: Academic Press. 2005.

27. Fereidoni M, Javan M, Semnanian S, Ahmadiani A. Chronic forced swim stress inhibits ultra-low dose morphine-induced hyperalgesia in rats. Behav Pharmacol 2007; 18:667-672.

28. Heidari-Oranjaghi N, Azhdari-Zarmehri H, Erami E, Haghparast A. Antagonism of orexin-1 receptors attenuates swim- and restraint stress-induced antinociceptive behaviors in formalin test. Pharmacol Biochem Behav 2012; 103:299-307.

29. Azhdari Zarmehri H, Semnanian S, Fathollahi Y, Erami E, Khakpay R, Azizi H, et al. Intra-periaqueductal gray matter microinjection of orexin-A decreases formalin-induced nociceptive behaviors in adult male rats. J Pain 2011; 12:280-287.

30. Lafrance M, Roussy G, Belleville K, Maeno H, Beaudet N, Wada K, et al. Involvement of NTS2 receptors in stress-induced analgesia. Neuroscience 2010; 166:639-652.

31. Mohammad-Zadeh M, Azhdari-Zarmehri H, Mosavi F, Haghdoost-Yazdi H, Nazeri M, Shabani M. Modulation of different phases of formalin test by force swim stress. BCN 2014;5:303-307.

32. Azhdari-Zarmehri H, Mohammad-Zadeh P, Feridoni M, Nazeri M. Termination of nociceptive bahaviour at the end of phase 2 of formalin test is attributable to endogenous inhibitory mechanisms, but not by opioid receptors activation. BCN 2014; 5:48-54.

33. Satoh M, Kuraishi Y, Kawamura M. Effects of intrathecal antibodies to substance P, calcitonin gene-related peptide and galanin on repeated cold stress-induced hyperalgesia: comparison with carrageenan-induced hyperalgesia. Pain 1992; 49:273-278.

34. Amit Z, Galina ZH. Stress-induced analgesia: adaptive pain suppression. Physiol Rev 1986; 66:1091-1120.

35. Ghasemi E, Heidari‐Oranjaghi N, Azhdari‐ Zarmehri H, Sadegh M. Repeated injections of orexin‐A developed behavioral tolerance to its analgesic effects in rats. Iran J Basic Med Sci 2015; 18:1183‐1188.

36. Gerashchenko D, Horvath TL, Xie XS. Direct inhibition of hypocretin/orexin neurons in the lateral hypothalamus by nociceptin/orphanin FQ blocks stress-induced analgesia in rats. Neuropharmacology 2011; 60:543-549.

37. Watanabe S, Kuwaki T, Yanagisawa M, Fukuda Y, Shimoyama M. Persistent pain and stress activate pain-inhibitory orexin pathways. Neuroreport 2005; 16:5-8.

38. Fields HL, Basbaum AI, Heinricher MM. Central nervous system mechanisms of pain modulation. In: McMahon S, Koltzenburg M, eds.Textbook of Pain . 5th ed. Burlington, Massachusetts, USA: Elsevier Health Sciences; 2005:125–142.

39. Fields HL, Bry J, Hentall I, Zorman G. The activity of neurons in the rostral medulla of the rat during withdrawal from noxious heat. J Neurosci 1983; 3:2545-2552.

40. Foo H, Helmstetter FJ. Hypoalgesia elicited by a conditioned stimulus is blocked by a mu, but not a delta or a kappa, opioid antagonist injected into the rostral ventromedial medulla. Pain 1999; 83:427-431.

41. Morgan MM, Whitney PK. Immobility accompanies the antinociception mediated by the rostral ventromedial medulla of the rat. Brain Res 2000; 872:276-281.

42. Bederson JB, Fields HL, Barbaro NM. Hyperalgesia during naloxone-precipitated withdrawal from morphine is associated with increased on-cell activity in the rostral ventromedial medulla. Somatosens Mot Res 1990; 7:185-203.

43. Heinricher MM, Morgan MM, Fields HL. Direct and indirect actions of morphine on medullary neurons that modulate nociception. Neuroscience 1992; 48:533-543.

44. Barbaro NM, Heinricher MM, Fields HL. Putative pain modulating neurons in the rostral ventral medulla: reflex-related activity predicts effects of morphine. Brain Res 1986; 366:203-210.

45. Fields HL, Heinricher MM. Anatomy and physiology of a nociceptive modulatory system. Philos Trans R Soc Lond B Biol Sci 1985; 308:361-374.

46. Kincaid W, Neubert MJ, Xu M, Kim CJ, Heinricher MM. Role for medullary pain facilitating neurons in secondary thermal hyperalgesia. J Neurophysiol 2006; 95:33-41.

47. Azhdari-Zarmehri H, Semnanian S, Fathollahi Y. Orexin-a modulates firing of rat rostral ventromedial medulla neurons: an in vitro study. Cell J 2015; 17:163-170.

48. Azhdari-Zarmehri H, Semnanian S, Fathollahi Y, Pakdel FG. Tail flick modification of orexin-a induced changes of electrophysiological parameters in the rostral ventromedial medulla. Cell J 2014; 16:131-140.

49. Berridge CW, Espana RA, Vittoz NM. Hypocretin/orexin in arousal and stress. Brain Res 2010; 1314:91-102.

50. Bingham S, Davey PT, Babbs AJ, Irving EA, Sammons MJ, Wyles M, et al. Orexin-A, an hypothalamic peptide with analgesic properties. Pain 2001; 92:81-90.

51. Nambu T, Sakurai T, Mizukami K, Hosoya Y, Yanagisawa M, Goto K. Distribution of orexin neurons in the adult rat brain. Brain Res 1999; 827:243-260.

52. Sakurai T, Amemiya A, Ishii M, Matsuzaki I, Chemelli RM, Tanaka H, et al. Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 1998; 92:573-585.

53. Bartsch T, Levy MJ, Knight YE, Goadsby PJ. Differential modulation of nociceptive dural input to [hypocretin] orexin A and B receptor activation in the posterior hypothalamic area. Pain 2004; 109:367-378.

54. Azami J, Green DL, Roberts MH, Monhemius R. The behavioural importance of dynamically activated descending inhibition from the nucleus reticularis gigantocellularis pars alpha. Pain 2001; 92:53-62.

55. Saade NE, Al Amin HA, Barchini J, Tchachaghian S, Shamaa F, Jabbur SJ, et al. Brainstem injection of lidocaine releases the descending pain-inhibitory mechanisms in a rat model of mononeuropathy. Exp Neurol 2012; 237:180-190.

56. Cho HJ, Basbaum AI. GABAergic circuitry in the rostral ventral medulla of the rat and its relationship to descending antinociceptive controls. J Comp Neurol 1991; 303:316-328.

57. Clark FM, Proudfit HK. Projections of neurons in the ventromedial medulla to pontine catecholamine cell groups involved in the modulation of nociception. Brain Res 1991; 540:105-115.

58. Kato G, Yasaka T, Katafuchi T, Furue H, Mizuno M, Iwamoto Y, et al. Direct GABAergic and glycinergic inhibition of the substantia gelatinosa from the rostral ventromedial medulla revealed by in vivo patch-clamp analysis in rats. J Neurosci 2006; 26:1787-1794.

59. Gilbert AK, Franklin KB. GABAergic modulation of descending inhibitory systems from the rostral ventromedial medulla (RVM). Dose-response analysis of nociception and neurological deficits. Pain 2001; 90:25-36.

60. Shamsizadeh A, Soliemani N, Mohammad-Zadeh M, Azhdari-Zarmehri H. Permanent lesion in rostral ventromedial medulla potentiates swim stress-induced analgesia in formalin test. Iranian Journal of Basic Medical Sciences  2014; 17:209-215.

61. Azhdari-Zarmehri H, Puzesh S, Rahmani A, Erami E, Emamjomeh MM. Assessing the effect of lidocaine injection into the nucleus paragigantocellularis-lateralis on formalin test and hot plate test induced nociceptive behaviors in rats. ZUMS Journal 2013; 21:10-29.

62. Azhdari Zarmehri H, Haidari-Oranji N, Soleimani N, Sofiabadi M. Effects of lidocaine injections into the rostral ventromedial medulla on nociceptive behviours in hot-plate and formalin tests in rats. Koomesh 2013; 14:490-496.

63. Soleimani N, Erami E, Abbasnejad M, Shamsizadeh A, Azhdari-Zarmehri H. Effect of transient inactivation of rostral ventromedial medulla on swim stressinduced analgesia in formalin test in rats. Physiol and Pharmacol 2013; 17:116-124.