1. World Health Organization (WHO). Global Tuberculo-sis Report. 2015. Available at: http:// www.who. int/tb/ publications/global_report/en/).
2. Matsumoto M, Hashizume H, Tomishige T, Kawasaki M, Tsubouchi H, Sasaki H, et al. OPC-67683, a nitro-dihydro-imidazooxazole derivative with promising action against tuberculosis in vitro and in mice. PLoS Med 2006; 3:e466.
3. Cole ST, Alzari PM. Microbiology. TB- a new target, a new drug. Science 2005; 307:214–215.
4. Chung BK-S, Dick T, Lee D-Y. In silico analyses for the discovery of tuberculosis drug targets. J Antimicrob Chemother 2013; 68:2701–2709.
5. Rodriguez GM, Voskuil MI, Gold B, Schoolnik GK, Smith I. ideR , an essential gene in mycobacterium tuberculosis : role of ideR in iron-dependent gene expression , iron metabolism , and oxidative stress response. Infect Immunol 2002; 70:3371–3381.
6. Pandey R, Rodriguez GM. IdeR is required for iron homeostasis and virulence in Mycobacterium tuberculosis. Mol Microbiol 2014; 91:98–109.
7. Keyer K, Imlay JA. Superoxide accelerates DNA damage by elevating free-iron levels. Proc Natl Acad Sci U S A 1996; 93:13635–13640.
8. Wisedchaisri G, Chou CJ, Wu M, Roach C, Rice AE, Holmes RK. Crystal structures , metal activation, and DNA-Binding properties of two-domain ideR from Mycobacterium tuberculosis. Biochemistry 2007; 46:436–447.
9. El-Ayaan U, Abdel-Aziz AA, Al-Shihry S. Solvatochromism, DNA binding, antitumor activity and molecular modeling study of mixed-ligand copper(II) complexes containing the bulky ligand: Bis[N-(p tolyl)imino]acenaphthene. Eur J Med Chem 2007; 42:1325–1233.
10. Mcalpine B. A colorimetric microassay for the detection of agents that interact with DNA. 1992; 55: 1582–1587.
11. Bronstein JC, Weber PC. A Colorimetric Assay for high-throughput screening of inhibitors of herpes simplex virus Type 1 alkaline nuclease. Anal Biochem [Internet] 2001; 293:239–245.
12. Franzblau SG, Witzig RS, McLaughlin JC, Torres P, Madico G, Hernandez A, et al. Rapid, low-technology MIC determination with clinical Mycobacterium tuberculosis isolates by using the microplate Alamar Blue assay. J Clin Microbiol 1998; 36:362–366.
13. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001; 25:402–408.
14. Schwyn B, Neilands JB. Universal chemical assay for the detection and determination of siderophores. Anal Biochem 1987; 160:47–56.
15. Dragset MS, Poce G, Alfonso S, Padilla-Benavides T, Ioerger TR, Kaneko T, et al. A novel antimycobacterial compound acts as an intracellular iron chelator. Antimicrob Agents Chemother 2015; 59:2256–2264.
16. Ghosh S, Prasad KVS, Vishveshwara S, Chandra N. Rule-based modelling of iron homeostasis in tuberculosis. Mol Biosyst 2011; 7:2750–2768.
17. Hao G, Rongji D, Kui Q, Zhongqiu T, Heyao W. A synthetic peptide derived from NK-lysin with activity against mycobacterium tuberculosis and its structure-function relationship. Int J Pept Res Ther 2011; 17:301–306.
18. Flexner C. HIV drug development: the next 25 years. Nat Rev Drug Discov 2007; 6:959–966.
19. Lau QY, Choo XY, Lim ZX, Kong XN, Ng FM, Ang MJY, et al. A head-to-head comparison of the antimicrobial activities of 30 ultra-short antimicrobial peptides against staphylococcus aureus, pseudomonas aeruginosa and Candida albicans. Int J Pept Res Ther 2015; 21:21–28.v