Insulin glargine affects the expression of Igf-1r, Insr, and Igf-1 genes in colon and liver of diabetic rats

Document Type: Original Article

Authors

1 División de Medicina Molecular, Centro de Investigación Biomédica de Occidente. Instituto Mexicano del Seguro Social. Guadalajara, Jalisco, México

2 Instituto de Enfermedades Crónico Degenerativas, Departamento de Biología Molecular y Genómica, C.U.C.S, Universidad de Guadalajara. Guadalajara, Jalisco, México

3 División de Genética, Centro de Investigación Biomédica de Occidente. Instituto Mexicano del Seguro Social. Guadalajara, Jalisco, México.

4 División de Genética, Centro de Investigación Biomédica de Occidente. Instituto Mexicano del Seguro Social. Guadalajara, Jalisco, México

Abstract

Objective(s): The mitogenic effect of the analogous insulin glargine is currently under debate since several clinical studies have raised the possibility that insulin glargine treatment has a carcinogenic potential in different tissues. This study aimed to evaluate the Igf-1r, Insr, and Igf-1 gene expression in colon and liver of streptozotocin-induced diabetic rats in response to insulin glargine, neutral protamine Hagedorn (NPH) insulin, and metformin treatments.
Materials and Methods: Male Wistar rats were induced during one week with streptozotocin to develop Type 2 Diabetes (T2D) and then randomly distributed into four groups. T2D rats included in the first group received insulin glargine, the second group received NPH insulin, the third group received metformin; finally, untreated T2D rats were included as the control group. All groups were treated for seven days; after the treatment, tissue samples of liver and colon were obtained. Quantitative PCR (qPCR) was performed to analyze the Igf-1r, Insr and Igf-1 gene expression in each tissue sample.
Results: The liver tissue showed overexpression of the Insr and Igf-1r genes (P>0.001) in rats treated with insulin glargine in comparison with the control group. Similar results were observed for the Insr gene (P>0.011) in colonic tissue of rats treated with insulin glargine.
Conclusion: These observations demonstrate that insulin glargine promote an excess of insulin and IGF-1 receptors in STZ-induced diabetic rats, which could overstimulate the mitogenic signaling pathways.

Keywords

Main Subjects


1. Giovannucci E, Harlan DM, Archer MC, Bergenstal RM, Gapstur SM, Habel LA, et al. Diabetes and cancer: a consensus report. Diabetes Care 2010; 33:1674–1685.
2. Saydah SH, Loria CM, Eberhardt MS, Brancati FL. Abnormal glucose tolerance and the risk of cancer death in the United States. Am J Epidemiol 2003; 157:1092–1100.
3. Coughlin SS, Calle EE, Teras LR, Petrelli J, Thun MJ. Diabetes mellitus as a predictor of cancer mortality in a large cohort of US adults. Am J Epidemiol 2004; 159:1160–1167.
4. Sandow J. Growth effects of insulin and insulin analogs. Arch Physiol Biochem 2009; 115:72–85.
5. Yang Y-X, Hennessy S, Lewis JD. Insulin therapy and colorectal cancer risk among type 2 diabetes mellitus patients. Gastroenterology 2004; 127:1044–1050.
6. Bowker SL, Majumdar SR, Veugelers P, Johnson JA. Increased cancer-related mortality for patients with type 2 diabetes who use sulfonylureas or insulin: Response to Farooki and Schneider. Diabetes Care 2006;29:1990–1991.
7. Chung YW, Han DS, Park KH, Eun CS, Yoo K-S, Park CK. Insulin therapy and colorectal adenoma risk among patients with Type 2 diabetes mellitus: a case-control study in Korea. Dis Colon Rectum 2008; 51:593–597.
8. Hemkens LG, Grouven U, Bender R, Gunster C, Gutschmidt S, Selke GW, et al. Risk of malignancies in patients with diabetes treated with human insulin or insulin analogs: a cohort study. Diabetologia 2009; 52:1732–1744.
9. Jonasson JM, Ljung R, Talback M, Haglund B, Gudbjornsdottir S, Steineck G. Insulin glargine use and short-term incidence of malignancies-a population-based follow-up study in Sweden. Diabetologia 2009; 52:1745–1754.
10. Colhoun HM. Use of insulin glargine and cancer incidence in Scotland: a study from the Scottish Diabetes Research Network Epidemiology Group. Diabetologia 2009; 52:1755–1765.
11. Chang CH, Toh S, Lin JW, Chen ST, Kuo CW, Chuang LM, et al. Cancer risk associated with insulin glargine among adult type 2 diabetes patients--a nationwide cohort study. PLoS One 2011; 6:e21368.
12. Morden NE, Liu SK, Smith J, Mackenzie TA, Skinner J, Korc M. Further exploration of the relationship between insulin glargine and incident cancer: a retrospective cohort study of older Medicare patients. Diabetes Care 2011; 34:1965–1971.
13. Ruiter R, Visser LE, van Herk-Sukel MPP, Coebergh JWW, Haak HR, Geelhoed-Duijvestijn PH, et al. Risk of cancer in patients on insulin glargine and other insulin analogs in comparison with those on human insulin: results from an extensive population-based follow-up study. Diabetologia 2012; 55:51–62.
14. Tennagels N, Welte S, Hofmann M, Brenk P, Schmidt R, Werner U. Differences in metabolic and mitogenic signaling of insulin glargine and AspB10 human insulin in rats. Diabetologia 2013; 56:1826–1834.
15. Hansen BF, Glendorf T, Hegelund AC, Lundby A, Lutzen A, Slaaby R, et al. Molecular characterization of long-acting insulin analogs in comparison with human insulin, IGF-1 and insulin X10. PLoS ONE 2012; 7:e34274.
16. Werner U, Korn M, Schmidt R, Wendrich TM, Tennagels N. Metabolic effect and receptor signaling profile of a non-metabolisable insulin glargine analog. Arch Physiol Biochem 2014; 120:158–165.
17. Sommerfeld MR, Muller G, Tschank G, Seipke G, Habermann P, Kurrle R, et al. In vitro metabolic and mitogenic signaling of insulin glargine and its metabolites. PLoS One 2010; 5:e9540.
18. Weinstein D, Simon M, Yehezkel E, Laron Z, Werner H. Insulin analogs display IGF-I-like mitogenic and anti-apoptotic activities in cultured cancer cells. Diabetes Metab Res Rev 2009; 25:41–49.
19. Bolli GB, Hahn AD, Schmidt R, Eisenblaetter T, Dahmen R, Heise T, et al. Plasma exposure to insulin glargine and its metabolites M1 and M2 after subcutaneous injection of therapeutic and supratherapeutic doses of glargine in subjects with type 1 diabetes. Diabetes Care 2012; 35:2626–2630.
20. Gallagher EJ, Zelenko Z, Tobin-Hess A, Werner U, Tennagels N, LeRoith D. Non-metabolisable insulin glargine does not promote breast cancer growth in a mouse model of type 2 diabetes. Diabetologia 2016; 59:2018–25.
21. Peeters PJHL, Bazelier MT, Leufkens HGM, Auvinen A, van Staa TP, de Vries F, et al. Insulin glargine use and breast cancer risk: Associations with cumulative exposure. Acta Oncol 2016; 55:851–858.
22. Bronsveld HK, ter Braak B, Karlstad O, Vestergaard P, Starup-Linde J, Bazelier MT, et al. Treatment with insulin (analogues) and breast cancer risk in diabetics; a systematic review and meta-analysis of in vitro, animal, and human evidence. Breast Cancer Res 2015;17:100.
23. Qin J, Teng JA, Zhu Z, Chen JX, Wu YY. Glargine Promotes Human Colorectal Cancer Cell Proliferation via Upregulation of  miR-95. Horm  Metab Res 2015;47:861–5.
24. Tseng CH. Treatment with human insulin does not increase thyroid cancer risk in patients with type 2 diabetes. Eur J Clin Invest 2014; 44:736–742.
25. Habel LA, Danforth KN, Quesenberry CP, Capra A, Van Den Eeden SK, Weiss NS, et al. Cohort study of insulin glargine and risk of breast, prostate, and colorectal cancer among patients with diabetes. Diabetes Care 2013; 36:3953–3960.
26. Li WG, Yuan YZ, Qiao MM, Zhang YP. High dose glargine alters the expression profiles of microRNAs in pancreatic cancer cells. World J Gastroenterol 2012; 18:2630–2639.
27. Gallagher EJ, Alikhani N, Tobin-Hess A, Blank J, Buffin NJ, Zelenko Z, et al. Insulin receptor phosphorylation by endogenous insulin or the insulin analog AspB10 promotes mammary tumor growth independent of the IGF-I receptor. Diabetes 2013; 62:3553–3560.
28. De Meyts P, Whittaker J. Structural biology of insulin and IGF1 receptors: implications for drug design. Nat Rev Drug Discov 2002; 1:769-783.
29. De Meyts P. The insulin receptor isoform A: a mitogenic proinsulin receptor?. Endocrinology 2012; 153:2054-2056.
30. Boucher J, Kleinridders A, Kahn CR. Insulin receptor signaling in normal and insulin-resistant states. Cold Spring Harb Perspect Biol 2014; 6:1-10.
31. Takada J, Machado MA, Peres SB, Brito LC, Borges-Silva CN, Costa CEM, et al. Neonatal streptozotocin-induced diabetes mellitus: a model of insulin resistance associated with loss of adipose mass. Metabolism 2007; 56:977–984.
32. Trevino-Alanis M, Ventura-Juarez J, Hernandez-Pinero J, Nevarez-Garza A, Quintanar-Stephano A, Gonzalez-Pina A. Delayed lung maturation of fetus of diabetic mother rats develop with a diminished, but without changes in the proportion of type I and II pneumocytes, and decreased expression of protein D-associated surfactant factor. Anat Histol Embryol 2009; 38:169–176.
33. Islas-Andrade S, Revilla Monsalve MC, Escobedo de la Peña J, Polanco AC, Palomino MA, Feria Velasco A. Streptozotocin and Alloxan in Experimental Diabetes: Comparison of The Two Models in Rats. Acta Histochem Cytochem 2000; 33:201–208.
34. Szkudelski T. The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiol Res 2001; 50:537–546.
35. Abeeleh MA. Induction of Diabetes Mellitus in Rats Using Intraperitoneal Streptozotocin : A Comparison between 2 Strains of Rats. Eur J Sci Res 2009; 32:398–402.
36. Etuk E. Animals models for studying diabetes mellitus. Agric Biol J N 2010; 1:130–134.
37. Pareek H, Sharma S, Khajja BS, Jain K, Jain GC. Evaluation of hypoglycemic and anti-hyperglycemic potential of Tridax procumbens  (Linn.). BMC Complement Altern Med 2009; 9:48.
38. Stammberger I, Bube A, Durchfeld-Meyer B, Donaubauer H, Troschau G. Evaluation of the carcinogenic potential of insulin glargine (LANTUS) in rats and mice. Int J Toxicol 2002; 21:171–179.
39. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001; 25:402–408.
40. Lucidi P, Porcellati F, Marinelli Andreoli A, Candeloro P, Cioli P, Bolli GB, Fanelli CG. Different insulin concentrations in resuspended vs. unsuspended NPH insulin: Practical aspects of subcutaneous injection in patients with diabetes. Diabetes Metab 2017; S1262-3636:30102-30107.
41. Rojas LB, Gomes MB. Metformin: an old but still the best treatment for type 2 diabetes. Diabetol Metab Syndr 2013; 5:6.
42. Chatzigeorgiou A, Halapas A, Kalafatakis K, Kamper E. The use of animal models in the study of diabetes mellitus. In Vivo 2009; 23:245–258.
43. Weir GC, Bonner-Weir S. Five stages of evolving beta-cell dysfunction during progression to diabetes. Diabetes. 2004; 53(3):16-21.
44. Li JB, Wang CY, Chen JW, Feng ZQ, Ma HT. Expression of liver insulin-like growth factor 1 gene and its serum level in patients with diabetes. World J Gastroenterol 2004;10:255-259.
45. Gallagher EJ, LeRoith D. IGF, Insulin, and Cancer. Endocrinology 2011; 152:2546–2551.
46. Tognon CE, Sorensen PH. Targeting the insulin-like growth factor 1 receptor (IGF1R) signaling pathway for cancer therapy. Expert Opin Ther Targets 2012; 16:33-48.
47. Chen HX, Sharon E. IGF-1R as an anti-cancer target--trials and tribulations. Chin J Cancer 2013; 32:242-252.
48. Heni M, Hennenlotter J, Scharpf M, Lutz SZ, Schwentner C, Todenhofer T, et al. Insulin Receptor Isoforms A and B as well as Insulin Receptor Substrates-1 and -2 Are Differentially Expressed in Prostate Cancer. PLoS One 2012; 7:e50953.
49. Heidegger I, Ofer P, Doppler W, Rotter V, Klocker H, Massoner P. Diverse functions of IGF/insulin signaling in malignant and noncancerous prostate cells: proliferation in cancer cells and differentiation in noncancerous cells. Endocrinology 2012; 153:4633–4643.
50. Heidegger I, Kern J, Ofer P, Klocker H, Massoner P. Oncogenic functions of IGF1R and INSR in prostate cancer include enhanced tumor growth, cell migration, and angiogenesis. Oncotarget 2014; 5:2723-2735.
51. Foulstone E, Prince S, Zaccheo O, Burns JL, Harper J, Jacobs C, et al. Insulin-like growth factor ligands, receptors, and binding proteins in cancer. J Pathol 2005; 205:145–153.
52. Pandini G, Frasca F, Mineo R, Sciacca L, Vigneri R, Belfiore A. Insulin/insulin-like growth factor I hybrid receptors have different biological characteristics depending on the insulin receptor isoform involved. J Biol Chem 2002; 277:39684–39695.
53. Belfiore A. The role of insulin receptor isoforms and hybrid insulin/IGF-I receptors in human cancer. Curr Pharm Des 2007; 13:671–686.
54. Pollak M. Insulin-like growth factor-related signaling and cancer development. Cancer Res 2007; 174:49–53.
55. Duan C, Ren H, Gao S. Insulin-like growth factors (IGFs), IGF receptors, and IGF-binding proteins: roles in skeletal muscle growth and differentiation. Gen Comp Endocrinol 2010; 167:344–351.
56. Kurtzhals P, Schaffer L, Sorensen A, Kristensen C, Jonassen I, Schmid C, et al. Correlations of receptor binding and metabolic and mitogenic potencies of insulin analogs designed for clinical use. Diabetes. 2000; 49:999–1005.
57. Denley A, Wallace JC, Cosgrove LJ, Forbes BE. The insulin receptor isoform exon 11- (IR-A) in cancer and other diseases: a review. Horm Metab Res 2003; 35:778–785.
58. Zhang Q, Celestino J, Schmandt R, McCampbell AS, Urbauer DL, Meyer LA, et al. Chemopreventive effects of metformin on obesity-associated endometrial proliferation. Am J Obstet Gynecol 2013; 209:1-12.
59. Sarfstein R, Friedman Y, Attias-Geva Z, Fishman A, Bruchim I, Werner H. Metformin downregulates the insulin/IGF-I signaling pathway and inhibits different uterine serous carcinoma (USC) cells proliferation and migration in p53-dependent or -independent manners. PLoS One 2013; 8:e61537.
60. Abo-Elmatty DM, Ahmed EA, Tawfik MK, Helmy SA. Metformin enhancing the antitumor efficacy of carboplatin against Ehrlich solid carcinoma grown in diabetic mice: Effect on IGF-1 and tumoral expression of IGF-1 receptors. Int Immunopharmacol 2017; 44:72-86.
61. Wang Z, Xiao X, Ge R, Li J, Johnson CW, Rassoulian C, et al. Metformin inhibits the proliferation of benign prostatic epithelial cells. PLoS One 2017; 12:e0173335.
62. Ferreira GD, Germeyer A, de Barros Machado A, do Nascimento TL, Brum IS, Strowitzki T, et al.  Are growth factor receptors modulated by metformin in human endometrial stromal cells after stimulation with androgen and insulinç?. Arch Gynecol Obstet 2014; 290:361-367.
63. Leibiger B, Moede T, Uhles S, Berggren PO, Leibiger IB. Short-term regulation of insulin gene transcription. Biochem Soc Trans 2002; 30:312-317.