1. Walker MD, Shane E. Postmenopausal osteoporosis. N Engl J Med 2023; 389:1979–1991.
2. Aibar-Almazán A, Voltes-Mart\’\inez A, Castellote-Caballero Y, Afanador-Restrepo DF, Carcelén-Fraile M del C, and López-Ruiz E. Current status of the diagnosis and management of osteoporosis. Int J Mol Sci 2022; 23:9465-9491.
3. Anam AK, Insogna K. Update on osteoporosis screening and management. Med Clin 2021; 105:1117–1134.
4. Foessl I, Dimai HP, and Obermayer-Pietsch B. Long-term and sequential treatment for osteoporosis. Nat Rev Endocrinol 2023; 19:520–533.
5. Song S, Guo Y, Yang Y, and Fu D. Advances in pathogenesis and therapeutic strategies for osteoporosis. Pharmacol Ther 2022; 237:108168.
6. Zhang L, Zheng Y-L, Wang R, Wang X-Q, and Zhang H. Exercise for osteoporosis: a literature review of pathology and mechanism. Front Immunol 2022; 13:1005665.
7. Alyamani M, Alshehri S, Alam P, Wani SUD, Ghoneim MM, Shakeel F. Solubility and solution thermodynamics of raloxifene hydrochloride in various (DMSO+ water) compositions. Alexandria Eng J 2022; 61:9119–9128.
8. Kher JD, Sorathia K, and Kher JD. Bioavailability enhancement of BCS class II raloxifene hydrochloride by inclusion complex and solid dispersion techniques. Zhongguo Ying Yong Sheng Li Xue Za Zhi= Zhongguo Yingyong Shenglixue Zazhi= Chinese J Appl Physiol 2024; 40:e20240002.
9. Jha AK. Methods of improving the solubility and bioavailability of therapeutic agents. United States: Google Patents; US11311493B2, 2025.
10. Abukhalil A. Raloxifene composition. WIPO (PCT); WO2011000581A2, 2011.
11. Alagarsamy A, Rambabu B, Reddy PS, Venugopal K, Kumar BR. Raloxifene pharmaceutical formulations. United States; US20110159084A1, 2009.
12. Williams G, Suman JD. In vitro anatomical models for nasal drug delivery. Pharmaceutics 2022; 14:1353-1364.
13. Chavda VP, Jogi G, Shah N, Athalye MN, Bamaniya N, Vora LK, et al. Advanced particulate carrier-mediated technologies for nasal drug delivery. J Drug Deliv Sci Technol 2022; 74:103569.
14. Rai G, Gauba P, Dang S. Recent advances in nanotechnology for Intra-nasal drug delivery and clinical applications. J Drug Deliv Sci Technol 2023; 86:104726.
15. Rabiee N, Ahmadi S, Afshari R, Khalaji S, Rabiee M, Bagherzadeh M, et al. Polymeric nanoparticles for nasal drug delivery to the brain: relevance to Alzheimer’s disease. Adv Ther 2021; 4:2000076.
16. Keller L-A, Merkel O, and Popp A. Intranasal drug delivery: Opportunities and toxicologic challenges during drug development. Drug Deliv Transl Res 2022; 12:735–757.
17. Fortuna A, Schindowski K, and Sonvico F. Intranasal drug delivery: Challenges and opportunities. Front Pharmacol 2022; 13:868986.
18. Li S, Yang C, Li J, Zhang C, Zhu L, Song Y, et al. Progress in pluronic F127 derivatives for application in wound healing and repair. Int J Nanomedicine 2023; 18: 4485–4505.
19. Shamma RN, Sayed RH, Madry H, El Sayed NS, and Cucchiarini M. Triblock copolymer bioinks in hydrogel three-dimensional printing for regenerative medicine: A focus on pluronic F127. Tissue Eng Part B Rev 2022; 28:451–463.
20. Lupu A, Rosca I, Gradinaru VR, and Bercea M. Temperature induced gelation and antimicrobial properties of Pluronic F127 based systems. Polymers (Basel) 2023; 15:355-372.
21. Varshosaz J, Minaiyan M, and Dayyani L. Poly(methyl vinyl ether-co-maleic acid) for enhancement of solubility, oral bioavailability and anti-osteoporotic effects of raloxifene hydrochloride. Eur J Pharm Sci 2018; 112:195–206.
22. Kim EY, Gao ZG, Park JS, Li H, Han K. rhEGF/HP-beta-CD complex in poloxamer gel for ophthalmic delivery. Int J Pharm 2002; 233:159–167.
23. Qian L, Cook MT, Dreiss CA. In situ gels for nasal delivery: Formulation, characterization and applications. Macromol Mater Eng 2025; 2400356.
24. Suhagiya K, Borkhataria CH, Gohil S, Manek RA, Patel KA, Patel NK, et al. Development of mucoadhesive in-situ nasal gel formulation for enhanced bioavailability and efficacy of rizatriptan in migraine treatment. Results Chem 2023; 6:101010.
25. Hard SAAA, Shivakumar HN, Bafail DA, and Moqbel Redhwan MA. Development of in vitro and in vivo evaluation of mucoadhesive in-situ gel for intranasal delivery of vinpocetine. J Drug Target 2025; 33:528–545.
26. El-Shenawy AA, Mahmoud RA, Mahmoud EA, Mohamed MS. Intranasal in situ gel of apixaban-loaded nanoethosomes: Preparation, optimization, and in vivo evaluation. AAPS PharmSciTech 2021; 22:147. doi: 10.1208/s12249-021-02020-y.
27. Mali A, Bhanwase A. In vitro, Ex vivo and in vivo assessment of brain targeted thermoreversible mucoadhesive in situ intranasal gel of carmustine for the treatment of glioblastoma. Bionanoscience 2024; 14:2571–2581.
28. Shah N V, Seth AK, Balaraman R, Aundhia CJ, Maheshwari RA, Parmar GR. Nanostructured lipid carriers for oral bioavailability enhancement of raloxifene: Design and in vivo study. J Adv Res 2016; 7:423–434.
29. Tjahjono R and Singh N. Correlation between nasal mucosal temperature change and the perception of nasal patency: A literature review. J Laryngol Otol 2021; 135:104–109.
30. Zhou Y, Zhang X-L, Lu S-T, Zhang N-Y, Zhang H-J, Zhang J, et al. Human adipose-derived mesenchymal stem cells-derived exosomes encapsulated in pluronic F127 hydrogel promote wound healing and regeneration. Stem Cell Res Ther 2022; 13:407-423.
31. Wu T-Y, Huang C-C, Tsai H-C, Lin T-K, Chen P-Y, Darge HF, et al. Mucin-mediated mucosal retention via end-terminal modified Pluronic F127-based hydrogel to increase drug accumulation in the lungs. Biomater Adv 2024; 156:213722.
32. Morsi N, Ghorab D, Refai H, and Teba H. Ketoroloac tromethamine loaded nanodispersion incorporated into thermosensitive in situ gel for prolonged ocular delivery. Int J Pharm 2016; 506:57–67.
33. Sherafudeen SP and Vasantha PV. Development and evaluation of in situ nasal gel formulations of loratadine. Res Pharm Sci 2015; 10:466–476.
34. Srivastava SK, Prasad M, Jha AK. Development and Evaluation of Thermo Triggered in situ nasal gel of selegiline for depressive disorders: In vitro, in vivo and ex vivo characterization. Res J Pharm Technol 2022; 15:1424–1430.
35. Garc\’\ia-Couce J, Tomás M, Fuentes G, Que I, Almirall A, Cruz LJ. Chitosan/Pluronic F127 thermosensitive hydrogel as an injectable dexamethasone delivery carrier. Gels 2022; 8:44-59.
36. Nian X, Zhang J, Huang S, Duan K, Li X, Yang X. Development of nasal vaccines and the associated challenges. Pharmaceutics 2022; 14:1983-2008.
37. Mali AH, Shaikh AZ. A short review on nasal drug delivery system. Asian J Pharm Technol 2021; 11:289–292.
38. Amponsah SK and Adams I. Drug Absorption via the Nasal Route: Opportunities and Challenges. In: Nasal Drug Delivery, Formulations, Developments, Challenges, and Solutions, Springer International Publishing, 2023; 25–42.
39. Mankar SD, Parjane SR, Siddheshwar SS, Dighe SB. Formulation, optimization and in vivo characterization of thermosensitive in situ nasal gel loaded with bacoside a for treatment of epilepsy. AAPS PharmSciTech 2024; 25:151. doi: 10.1208/s12249-024-02870-2.
40. Kammoun AK, Khedr A, Hegazy MA, Almalki AJ, Hosny KM, Abualsunun WA, et al. Formulation, optimization, and nephrotoxicity evaluation of an antifungal in situ nasal gel loaded with voriconazole--clove oil transferosomal nanoparticles. Drug Deliv 2021; 28:2229–2240.
41. Balakrishnan P, Park E-K, Song C-K, Ko H-J, Hahn T-W, Song K-W, et al. Carbopol-incorporated thermoreversible gel for intranasal drug delivery. Molecules 2015; 20:4124–4135.
42. dos Santos ACM, Akkari ACS, Ferreira IRS, Maruyama CR, Pascoli M, Guilherme VA, et al. Poloxamer-based binary hydrogels for delivering tramadol hydrochloride: sol-gel transition studies, dissolution-release kinetics, in vitro toxicity, and pharmacological evaluation. Int J Nanomedicine 2015; 10:2391–2401.
43. Şenyiğit ZA, Karavana SY, İlem-Özdemir D, Çalışkan Ç, Waldner C, Şen S, et al. Design and evaluation of an intravesical delivery system for superficial bladder cancer: Preparation of gemcitabine HCl-loaded chitosan-thioglycolic acid nanoparticles and comparison of chitosan/poloxamer gels as carriers. Int J Nanomedicine 2015; 10:6493–6507.
44. Bhandwalkar MJ and Avachat AM. Thermoreversible nasal in situ gel of venlafaxine hydrochloride: Formulation, characterization, and pharmacodynamic evaluation. AAPS PharmSciTech 2013; 14:101–110.
45. Kushan E and Senses E. Thermoresponsive and injectable composite hydrogels of cellulose nanocrystals and pluronic F127. ACS Appl Bio Mater 2021; 4:3507–3517.
46. Zou S, He Q, Wang Q, Wang B, Liu G, Zhang F, et al. Injectable nanosponge-loaded Pluronic F127 hydrogel for pore-forming toxin neutralization. Int J Nanomedicine 2021; 4239–4250.
47. Yurtda\cs-K\ir\iml\io\uglu G. A promising approach to design thermosensitive in situ gel based on solid dispersions of desloratadine with Kolliphor®188 and Pluronic®F127. J Therm Anal Calorim 2022; 147:1307–1327.
48. Rao M, Agrawal DK, and Shirsath C. Thermoreversible mucoadhesive in situ nasal gel for treatment of Parkinson’s disease. Drug Dev Ind Pharm 2017; 43:142–150.
49. Verhoeven E, Vervaet C, and Remon JP. Xanthan gum to tailor drug release of sustained-release ethylcellulose mini-matrices prepared via hot-melt extrusion: In vitro and in vivo evaluation. Eur J Pharm Biopharm 2006; 63:320–330.
50. Charoo NA, Kohli K, Ali A. Preparation of in situ-forming ophthalmic gels of ciprofloxacin hydrochloride for the treatment of bacterial conjunctivitis: In vitro and in vivo studies. J Pharm Sci 2003; 92:407–413.
51. Mahmoud RA, Abdelhafez WA, Mahmoud EA, Hassan Y, Amin MA, Zayed GM, et al. Cilostazol niosomes-loaded transdermal gels: An in vitro and in vivo anti-aggregant and skin permeation activity investigations towards preparing an efficient nanoscale formulation. Nanotechnol Rev 2024; 13:20240066.
52. Bosman A, Koek WNH, Campos-Obando N, van der Eerden BCJ, Ikram MA, Uitterlinden AG, et al. Sexual dimorphisms in serum calcium and phosphate concentrations in the Rotterdam Study. Sci Rep 2023; 13:8310-8319.
53. Pardhe BD, Pathak S, Bhetwal A, Ghimire S, Shakya S, Khanal PR, et al. Effect of age and estrogen on biochemical markers of bone turnover in postmenopausal women: A population-based study from Nepal. Int J Womens Health 2017; 9:781–788.
54. Shu J, Tan A, Li Y, Huang H, and Yang J. The correlation between serum total alkaline phosphatase and bone mineral density in young adults. BMC Musculoskelet Disord 2022; 23:467-474.
55. Cheng X and Zhao C. The correlation between serum levels of alkaline phosphatase and bone mineral density in adults aged 20 to 59 years. Medicine (Baltimore) 2023; 102:e34755.
56. Ahmed OA and Badr-Eldin SM. In situ misemgel as a multifunctional dual-absorption platform for nasal delivery of raloxifene hydrochloride: Formulation, characterization, and in vivo performance. Int J Nanomedicine 2018; 13:6325–6335.
57. Saini D, Fazil M, Ali MM, Baboota S, and Ali J. Formulation, development and optimization of raloxifene-loaded chitosan nanoparticles for treatment of osteoporosis. Drug Deliv 2015; 22:823–836.
58. Moreno E, Schwartz J, Larrañeta E, Nguewa P, Sanmartín C, Agüeros M, et al. Thermosensitive hydrogels of poly(methyl vinyl ether-co-maleic anhydride) - Pluronic (R) F127 copolymers for controlled protein release. Int J Pharm 2014; 459:1-9.
59. Varshosaz J, Hassanzadeh F, Sadeghi-aliabadi H, Larian Z, Rostami M. Synthesis of Pluronic® F127-poly (methyl vinyl ether-alt-maleic acid) copolymer and production of its micelles for doxorubicin delivery in breast cancer. Chem Eng J 2014; 240:133–146.