Hypoxic tumor microenvironment and immune cell dynamics: From metabolic reprogramming to therapeutic innovation

Document Type : Review Article

Authors

1 Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran

2 Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran

3 Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran

4 Department of Microbiology, Tehran Medical Branch, Islamic Azad University, Tehran, Iran

5 Department of Immunology, Medical Faculty, Shahed University, Tehran, Iran

6 Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran

10.22038/ijbms.2025.90209.19446

Abstract

The tumor microenvironment (TME) comprises the cellular and non-cellular components present within and around a tumor and plays a critical role in tumor progression and development. Metabolic changes in immune cells within the TME have been reported, including alterations of glycolysis, oxidative phosphorylation, and fatty acid oxidation pathways that contribute to tumorigenesis. In the present review, we highlight the significant role of hypoxia within the TME as a primary characteristic of most solid tumors. A comprehensive search of the EMBASE, MEDLINE, and Web of Science databases was conducted, encompassing all literature published up to and including June 2025. This study emphasizes the critical role of hypoxia in the TME and its impact on immune cell function. By understanding how hypoxia affects immune cell metabolism, researchers can develop therapeutic approaches targeting immune cell metabolism in the TME. In this regard, we discussed the role of targeting hypoxia via HIF-1 for immunotherapeutic implications; targeting HIF-1 for immunotherapeutic purposes is an area of active research and holds promise for developing new and more effective cancer treatments.

Keywords

Main Subjects


1. Park J, Hsueh PC, Li Z, Ho PC. Microenvironment-driven metabolic adaptations guiding CD8+ T cell anti-tumor immunity. Immunity 2023;56:32–42.
2.    Ahmadi M, Abbasi R, Rezaie J. Tumor immune escape: Extracellular vesicles roles and therapeutics application. Cell Commun Signal 2024;22:9-15.
3.    Curvello R, Berndt N, Hauser S, Loessner D. Recreating metabolic interactions of the tumour microenvironment. Trends Endocrinol Metab 2024;35:1–12.
4.    Cao J, Mei J, Xie J. Combined effects of hypoxia and ammonia-N exposure on the immune response, oxidative stress, tissue injury and apoptosis of hybrid grouper. Environ Sci Pollut Res 2024;31:845–856.
5.    Tufail M, Jiang CH, Li N. Altered metabolism in cancer: Insights into energy pathways and therapeutic targets. Mol Cancer 2024;23:203-210.
6.    Li J, Yue Z, Tang M, Wang W, Sun Y, Sun T et al. Strategies to reverse hypoxic tumor microenvironment for enhanced sonodynamic therapy. Adv Healthc Mater 2024;13:230-239.
7.    Broz MT, Ko EY, Ishaya K, Xiao J, De Simone M, Hoi XP et al. Metabolic targeting of cancer associated fibroblasts overcomes T-cell exclusion and chemoresistance in soft-tissue sarcomas. Nat Commun 2024;15:249-256.
8.    Shao N, Qiu H, Liu J, Xiao D, Zhao J, Chen C et al. Targeting lipid metabolism of macrophages: A new strategy for tumor therapy. J Adv Res 2024;50:1–15.
9.     Zhou Y, Yao L, Ma T, Wang Z, Yin Y, Yang J et al. Indoleamine 2,3-dioxygenase-1 involves in CD8+ T cell exhaustion in glioblastoma via regulating tryptophan levels. Int Immunopharmacol 2024;142:113-117.
10.    Roumeliotou A, Strati A, Chamchougia F, Xagara A, Tserpeli V, Smilkou S et al. Comprehensive analysis of CXCR4, JUNB, and PD-L1 expression in circulating tumor cells from prostate cancer patients. Cells 2024;13:782-790.
11.    Haynes NM, Chadwick TB, Parker BS. The complexity of immune evasion mechanisms throughout the metastatic cascade. Nat Immunol 2024;25:1–16.
12.    Taha Z, Crupi MJF, Alluqmani N, MacKenzie D, Vallati S, Whelan JT et al. Complementary dual-virus strategy drives synthetic target and cognate T-cell engager expression for endogenous-antigen agnostic immunotherapy. Nat Commun 2024;15:726-730.
13.    Vignali PD, DePeaux K, Watson MJ, Ye C, Ford BR, Lontos K et al. Hypoxia drives CD39-dependent suppressor function in exhausted T cells to limit antitumor immunity. Nat Immunol 2023;24:267–279.
14.    Scharping NE, Rivadeneira DB, Menk AV, Vignali PD, Ford BR, Rittenhouse NL et al. Mitochondrial stress induced by continuous stimulation under hypoxia rapidly drives T cell exhaustion. Nat Immunol 2021;22:205–215.
15.    Xun Z, Zhou H, Shen M, Liu Y, Sun C, Du Y et al. Identification of hypoxia-ALCAMhigh macrophage-exhausted T cell axis in tumor microenvironment remodeling for immunotherapy resistance. Adv Sci 2024;11:230-239.
16.    Cheng P, Xie X, Hu L, Zhou W, Mi B, Xiong Y et al. Hypoxia endothelial cells-derived exosomes facilitate diabetic wound healing through improving endothelial cell function and promoting M2 macrophages polarization. Bioact Mater 2024;33:157–173.
17.    Liu Y, Zhao Y, Song H, Li Y, Liu Z, Ye Z et al. Metabolic reprogramming in tumor immune microenvironment: Impact on immune cell function and therapeutic implications. Cancer Lett 2024;590:217-225.
18.    Yang K, Zhong Z, Zou J, Liao JY, Chen S, Zhou S et al. Glycolysis and tumor progression promoted by the m6A writer VIRMA via m6A-dependent upregulation of STRA6 in pancreatic ductal adenocarcinoma. Cancer Lett 2024;590:216-224.
19.    Baran N, Patel S, Lodi A, Ortiz JE, Dhungana Y, Collins M et al. Accumulation of intracellular L-lactate and irreversible disruption of mitochondrial membrane potential upon dual inhibition of OxPhos and lactate transporter MCT-1 induce synthetic lethality in T-ALL via mitochondrial exhaustion. Blood 2021;138:680-690.
20.    Yamaguchi A, Mukai Y, Sakuma T, Narumi K, Furugen A, Yamada Y et al. Monocarboxylate transporter 4 involves in energy metabolism and drug sensitivity in hypoxia. Sci Rep 2023;13:1501-1510.
21.    Mathew M, Nguyen NT, Bhutia YD, Sivaprakasam S, Ganapathy V. Metabolic signature of Warburg effect in cancer: An effective and obligatory interplay between nutrient transporters and catabolic/anabolic pathways to promote tumor growth. Cancers 2024;16:504-512.
22.    Cao B, Liu M, Wang L, Zhu K, Cai M, Chen X et al. Remodelling of tumour microenvironment by microwave ablation potentiates immunotherapy of AXL-specific CAR T cells against non-small cell lung cancer. Nat Commun 2022;13:620-631.
23.    Rezaei R, Baghaei K, Amani D, Piccin A, Hashemi SM, Aghdaei HA et al. Exosome-mediated delivery of functionally active miRNA-375-3p mimic regulate epithelial mesenchymal transition of colon cancer cells. Life Sci 2021;269:119-125.
24.    Rangel Rivera GO, Knochelmann HM, Dwyer CJ, Smith AS, Wyatt MM, Rivera-Reyes AM et al. Fundamentals of T cell metabolism and strategies to enhance cancer immunotherapy. Front Immunol 2021;12:645-648.
25.    D’Aria S, Maquet C, Li S, Dhup S, Lepez A, Kohler A et al. Expression of the monocarboxylate transporter MCT1 is required for virus-specific mouse CD8+ T cell memory development. Proc Natl Acad Sci U S A 2024;121:e2306763121.
26.    Martins CP, New LA, O’Connor EC, Previte DM, Cargill KR, Tse IL et al. Glycolysis inhibition induces functional and metabolic exhaustion of CD4+ T cells in type 1 diabetes. Front Immunol 2021;12:669-673.
27.    Karagiota A, Kanoura A, Paraskeva E, Simos G, Chachami G. Pyruvate dehydrogenase phosphatase 1 stimulates HIF activity by supporting histone acetylation under hypoxia. FEBS J 2023;290:2165–2179.
28.    Tong YH, Hu XP, Xiang XP, Fang L. High expression of monocarboxylate transporter 4, but not MCT1, predicts poor prognosis in patients with non-small cell lung cancer. Transl Cancer Res 2021;10:133-139.
29.    La Manna MP, Shekarkar Azgomi M, Tamburini B, Badami GD, Mohammadnezhad L, Dieli F et al. Phenotypic and immunometabolic aspects on stem cell memory and resident memory CD8+ T cells. Front Immunol 2022;13:88-95.
30.    Arias C, Sepúlveda P, Castillo RL, Salazar LA. Relationship between hypoxic and immune pathways activation in the progression of neuroinflammation: Role of HIF-1α and Th17 cells. Int J Mol Sci 2023;24:307-312.
31.    Iman M, Rezaei R, Azimzadeh Jamalkandi S, Shariati P, Kheradmand F, Salimian J. Th17/Treg immunoregulation and implications in treatment of sulfur mustard gas-induced lung diseases. Expert Rev Clin Immunol 2017;13:1173–1188.
32.    Jiao M, Bao X, Hu M, Pan D, Liu X, Kim J et al. VHL loss enables immune checkpoint blockade therapy by boosting type I interferon response. bioRxiv 2023, 2023.11.28.569047. doi: 10.1101/2023.11.28.569047.
33.    Lee JH, Elly C, Park Y, Liu YC. E3 ubiquitin ligase VHL regulates hypoxia-inducible factor-1α to maintain regulatory T cell stability and suppressive capacity. Immunity 2015;42:1062–1074-1083.
34.    Boothby M, Cho SH. Hypoxia and the hypoxia-inducible factors in lymphocyte differentiation and function. In: Transcription factors in blood cell development. Adv Exp Med Biol 2024;115–141.
35.    Xiong L, He X, Wang L, Dai P, Zhao J, Zhou X et al. Hypoxia-associated prognostic markers and competing endogenous RNA coexpression networks in lung adenocarcinoma. Sci Rep 2022;12:213-240.
36.    Sharma V, Fernando V, Letson J, Walia Y, Zheng X, Fackelman D et al. S-nitrosylation in tumor microenvironment. Int J Mol Sci 2021;22:460-465.
37.    Byrnes JR, Weeks AM, Shifrut E, Carnevale J, Kirkemo L, Ashworth A et al. Hypoxia is a dominant remodeler of the effector T cell surface proteome relative to activation and regulatory T cell suppression. Mol Cell Proteomics 2022;21:156-173.
38.    Adinolfi E, Pegoraro A, De Marchi E, Ruo L, Zanoni M, Chioccioli S et al. P2X7 a new therapeutic target to block vesicle-dependent metastasis in colon carcinoma: role of the A2A/CD39/CD73 axis. Cell Death & Disease 2024:25;781-790.
39.    Alrubayyi A, Moreno-Cubero E, Hameiri-Bowen D, Matthews R, Rowland-Jones S, Schurich A et al. Functional restoration of exhausted CD8 T cells in chronic HIV-1 infection by targeting mitochondrial dysfunction. Front Immunol 2022;13:908-915.
40.    Sun P, Zhang X, Wang RJ, Ma QY, Xu L, Wang Y et al. PI3Kα inhibitor CYH33 triggers antitumor immunity in murine breast cancer by activating CD8+ T cells and promoting fatty acid metabolism. J Immunother Cancer 2021;9:e002953.
41.    Park B, Heo SJ, Lee YJ, Seo MK, Hong J, Shin EC et al. HLA-I-restricted CD8+ T cell immunity may accelerate tumorigenesis in conjunction with VHL inactivation. iScience 2022;25:104-112.
42.    Hosonuma M, Yoshimura K. Association between pH regulation of the tumor microenvironment and immunological state. Front Oncol 2023;13:1175563.
43.    Ding XC, Wang LL, Zhang XD, Xu JL, Li PF, Liang H et al. The relationship between expression of PD-L1 and HIF-1α in glioma cells under hypoxia. J Hematol Oncol 2021;14:92-99.
44.    Rezaei R, Baghaei K, Hashemi SM, Zali MR, Ghanbarian H, Amani D. Tumor-derived exosomes enriched by miRNA-124 promote anti-tumor immune response in CT-26 tumor-bearing mice. Front Med 2021;8:619-625.
45.    Liu X, Li Z, Sun J, Zhang Z, Li W. Interaction between PD-L1 and soluble VEGFR1 in glioblastoma-educated macrophages. BMC Cancer 2023;23:259-265.
46.    Tang K, Ma J, Huang B. Macrophages’ M1 or M2 by tumor microparticles: lysosome makes decision. Cell Mol Immunol 2022;19:1196–1197.
47.    Kou Y, Li Z, Sun Q, Yang S, Wang Y, Hu C et al. Prognostic value and predictive biomarkers of phenotypes of tumour-associated macrophages in colorectal cancer. Scand J Immunol 2022;95:e13137.
48.    Hou SM, Lin CY, Fong YC, Tang CH. Hypoxia-regulated exosomes mediate M2 macrophage polarization and promote metastasis in chondrosarcoma. Aging (Albany NY) 2023;15:131-139.
49.    Kim AR, Choi SJ, Park J, Kwon M, Chowdhury T, Yu HJ et al. Spatial immune heterogeneity of hypoxia-induced exhausted features in high-grade glioma. Oncoimmunology 2022;11:202-210.
50.    Liao TT, Chen YH, Li ZY, Hsiao AC, Huang YL, Hao RX et al. Hypoxia-induced long noncoding RNA HIF1A-AS2 regulates stability of MHC class I protein in head and neck cancer. Cancer Immunol Res 2024;12:1468–1484.
51.    Wang B, Li Q, Qin L, Zhao S, Wang J, Chen X. Transition of tumor-associated macrophages from MHC class IIhi to MHC class IIlo mediates tumor progression in mice. BMC Immunol 2011;12:1–12.
52.    Pham T, Ohe C, Yoshida T, Nakamoto T, Kinoshita H, Tsuta K. Hypoxia-inducible factor 2α protein and mRNA expression correlate with histomorphological features in clear cell renal cell carcinoma. Pathol Res Pract 2023;251:154-162.
53.    Wang J, Mi S, Ding M, Li X, Yuan S. Metabolism and polarization regulation of macrophages in the tumor microenvironment. Cancer Lett 2022;543:215766.
54.    Zhang Y, Zhang X, Meng Y, Xu X, Zuo D. The role of glycolysis and lactate in the induction of tumor-associated macrophages immunosuppressive phenotype. Int Immunopharmacol 2022; 110:108-115.
55.    Nakamizo S, Kabashima K. Metabolic reprogramming and macrophage polarization in granuloma formation. Int Immunol 2024;36:329–338.
56.    Hou L, Gong X, Yang J, Zhang H, Yang W, Chen X. Hybrid-membrane-decorated prussian blue for effective cancer immunotherapy via tumor-associated macrophages polarization and hypoxia relief. Adv Mater 2022;34:220-225.
57.    Uemura M, Maeshige N, Yamaguchi A, Ma X, Matsuda M, Nishimura Y et al. Electrical stimulation facilitates NADPH production in pentose phosphate pathway and exerts an anti-inflammatory effect in macrophages. Sci Rep 2023;13:17819.
58.    Stifel U, Wolfschmitt EM, Vogt J, Wachter U, Vettorazzi S, Tews D et al. Glucocorticoids coordinate macrophage metabolism through the regulation of the tricarboxylic acid cycle. Mol Metab 2022;57:101-112.
59.    Fuhrmann DC, Brüne B. miR-193a-3p increases glycolysis under hypoxia by facilitating Akt phosphorylation and PFKFB3 activation in human macrophages. Cell Mol Life Sci 2022;79:89-93.
60.    Xiao X, Li Y, Wang Y, Zhang Y, Chen J, Liu W et al. Dihydroartemisinin inhibits Lewis lung carcinoma progression by inducing macrophages M1 polarization via AKT/mTOR pathway. Int Immunopharmacol 2022;103:108-127.
61.    Liu J, Gao M, Yang Z, Zhao Y, Guo K, Sun B et al. Macrophages and metabolic reprograming in the tumor microenvironment. Front Oncol 2022;12:795-804.
62.    Yuan X, Liu X, Jiang D, Zheng Z, Ma X, Wu S et al. Exosomal PD-L1 derived from hypoxia nasopharyngeal carcinoma cell exacerbates CD8+ T cell suppression by promoting PD-L1 upregulation in macrophages. Cancer Immunol Immunother 2025;74:22-29.
63.    Wang W, Li T, Cheng Y, Li F, Qi S, Mao M et al. Identification of hypoxic macrophages in glioblastoma with therapeutic potential for vasculature normalization. Cancer Cell 2024;42:815–832.e12.
64.    Niu X, Ma J, Li J, Gu Y, Yin L, Wang Y et al. Sodium/glucose cotransporter 1-dependent metabolic alterations induce tamoxifen resistance in breast cancer by promoting macrophage M2 polarization. Cell Death Dis 2021;12:509-515.
65.    He Z, Zhang S. Tumor-associated macrophages and their functional transformation in the hypoxic tumor microenvironment. Front Immunol 2021;12:74-85.
66.    Garg P, Jallepalli VR, Verma S. Unravelling the CXCL12/CXCR4 axis in breast cancer: Insights into metastasis, microenvironment interactions, and therapeutic opportunities. Hum Gene 2024;38:201-215.
67.    Petty AJ, Dai R, Lapalombella R, Baiocchi RA, Benson DM, Li Z et al. Hedgehog-induced PD-L1 on tumor-associated macrophages is critical for suppression of tumor-infiltrating CD8+ T cell function. JCI Insight 2021;6:e14491.
68.    Ou Y, Yang Y, Li X, Zhang X, Zhao L, Yang C et al. Arginine metabolism key enzymes affect the prognosis of myelodysplastic syndrome by interfering with macrophage polarization. Cancer Med 2023;12:16444–16454.
69.    Sattiraju A, Kang S, Giotti B, Chen Z, Marallano VJ, Brusco C et al. Hypoxic niches attract and sequester tumor-associated macrophages and cytotoxic T cells and reprogram them for immunosuppression. Immunity 2023;56:1825–1843.e6.
70.    Cheng Y, Zhu Y, Xu J, Yang M, Chen P, Xu W et al. PKN2 in colon cancer cells inhibits M2 phenotype polarization of tumor-associated macrophages via regulating DUSP6-Erk1/2 pathway. Mol Cancer 2018;17:1–16.
71.    Chen XJ, Deng YR, Wang ZC, Wei WF, Zhou CF, Zhang YM et al. Hypoxia-induced ZEB1 promotes cervical cancer progression via CCL8-dependent tumour-associated macrophage recruitment. Cell Death Dis 2019;10:508-515.
72.    Poznanski SM, Singh K, Ritchie TM, Aguiar JA, Fan IY, Portillo AL et al. Metabolic flexibility determines human NK cell functional fate in the tumor microenvironment. Cell Metab 2021;33:1205–1220.e5.
73.    Schilling D, Tetzlaff F, Konrad S, Li W, Multhoff G. A hypoxia-induced decrease of either MICA/B or Hsp70 on the membrane of tumor cells mediates immune escape from NK cells. Cell Stress Chaperones 2015;20:139–147.
74.    Ou ZL, Luo Z, Wei W, Liang S, Gao TL, Lu YB. Hypoxia-induced shedding of MICA and HIF1A-mediated immune escape of pancreatic cancer cells from NK cells: Role of circ_0000977/miR-153 axis. RNA Biol 2019;16:1592–1603.
75.    Jones AB, Rocco A, Lamb LS, Friedman GK, Hjelmeland AB. Regulation of NKG2D stress ligands and its relevance in cancer progression. Cancers 2022;14:23-39.
76.    Coyle KM, Hawke LG, Ormiston ML. Addressing natural killer cell dysfunction and plasticity in cell-based cancer therapeutics. Cancers 2023;15:174-180.
77.    Abou Faycal C, Gazzeri S, Eymin B. A VEGF-A/SOX2/SRSF2 network controls VEGFR1 pre-mRNA alternative splicing in lung carcinoma cells. Sci Rep 2019;9:336-347.
78.    Krzywinska E, Kantari-Mimoun C, Kerdiles Y, Sobecki M, Isagawa T, Gotthardt D et al. Loss of HIF-1α in natural killer cells inhibits tumour growth by stimulating non-productive angiogenesis. Nat Commun 2017;8:159-170.
79.    Shokouhifar A, Anani Sarab G, Yazdanifar M, Fereidouni M, Nouri M, Ebrahimi M. Overcoming the UCB HSCs-derived NK cells dysfunction through harnessing RAS/MAPK, IGF-1R and TGF-β signaling pathways. Cancer Cell Int 2021;21:298-305.
80.    Bozward AG, Warricker F, Oo YH, Khakoo SI. Natural killer cells and regulatory T cells cross talk in hepatocellular carcinoma: exploring therapeutic options for the next decade. Front Immunol 2021;12:512-521.
81.    Kennedy PR, Arvindam US, Phung SK, Ettestad B, Feng X, Li Y et al. Metabolic programs drive function of therapeutic NK cells in hypoxic tumor environments. Sci Adv 2024;10:eadn1849.
82.    Lim SA, Moon Y, Shin MH, Kim TJ, Chae S, Yee C et al. Hypoxia-driven HIF-1α activation reprograms pre-activated NK cells towards highly potent effector phenotypes via ERK/STAT3 pathways. Cancers 2021;13:190-198.
83.    Lee HH, Cho H. Apigenin increases natural killer cytotoxicity to human hepatocellular carcinoma expressing HIF-1α through high interaction of CD95/CD95L. J Microbiol Biotechnol 2022;32:397–405.
84.    Cluff E, Magdaleno CC, Fernandez E, House T, Swaminathan S, Varadaraj A et al. Hypoxia-inducible factor-1 alpha expression is induced by IL-2 via the PI3K/mTOR pathway in hypoxic NK cells and supports effector functions in NKL cells and ex vivo expanded NK cells. Cancer Immunol Immunother 2022;71:1–17.
85.    Gonzalez-Avila G, Sommer B, Flores-Soto E, Aquino-Galvez A. Hypoxic effects on matrix metalloproteinases’ expression in the tumor microenvironment and therapeutic perspectives. Int J Mol Sci 2023;24:168-175.
86.    Lv LH, Yu JD, Li GL, Long TZ, Zhang W, Chen YJ et al. Functional distinction of rat liver natural killer cells from spleen natural killer cells under normal and acidic conditions in vitro. Hepatobiliary Pancreat Dis Int 2012;11:285–293.
87.    Tumino N, Di Pace AL, Besi F, Quatrini L, Vacca P, Moretta L. Interaction between MDSC and NK cells in solid and hematological malignancies: impact on HSCT. Front Immunol 2021;12:638-645.
88.    Velásquez SY, Himmelhan BS, Kassner N, Coulibaly A, Schulte J, Brohm K et al. Innate cytokine induced early release of IFNγ and CC chemokines from hypoxic human NK cells is independent of glucose. Cells 2020;9:734-745.
89.    Berchem G, Noman MZ, Bosseler M, Paggetti J, Baconnais S, Le Cam E et al. Hypoxic tumor-derived microvesicles negatively regulate NK cell function by a mechanism involving TGF-β and miR23a transfer. Oncoimmunology 2016;5:e1062968.
90.    Gong S, Mei N, Wang J, Zhu J, Wang L, Lu X et al. A novel feeder cell based on 4-1BBL and membrane-bound IL-21/IL-15 induce highly expansion and anti-tumor effect of natural killer cells. BMC Biotechnol 2025;25:89-98.
91.    Moinuddin A, Poznanski SM, Portillo AL, Monteiro JK, Ashkar AA. Metabolic adaptations determine whether natural killer cells fail or thrive within the tumor microenvironment. Immunol Rev 2024;323:19–39.
92.    Monti M, Ferrari G, Gazzurelli L, Bugatti M, Facchetti F, Vermi W et al. Plasmacytoid dendritic cells at the forefront of anti-cancer immunity: rewiring strategies for tumor microenvironment remodeling. J Exp Clin Cancer Res 2024;43:196-202.
93.    Giuliani KT, Grivei A, Nag P, Wang X, Rist M, Kildey K et al. Hypoxic human proximal tubular epithelial cells undergo ferroptosis and elicit an NLRP3 inflammasome response in CD1c+ dendritic cells. Cell Death Dis 2022;13:739-742.
94.    Suthen S, Lim CJ, Nguyen PH, Dutertre CA, Lai HL, Wasser M et al. Hypoxia-driven immunosuppression by Treg and type-2 conventional dendritic cells in HCC. Hepatology 2022;76:1329–1344.
95.    Peng X, He Y, Huang J, Tao Y, Liu S. Metabolism of dendritic cells in tumor microenvironment: for immunotherapy. Front Immunol 2021;12:613-642.
96.    Lee ES, Sul JH, Shin JM, Shin S, Lee JA, Kim HK et al. Reactive oxygen species-responsive dendritic cell-derived exosomes for rheumatoid arthritis. Acta Biomater 2021;128:462–473.
97.    Kotsias F, Hoffmann E, Amigorena S, Savina A. Reactive oxygen species production in the phagosome: Impact on antigen presentation in dendritic cells. Antioxid Redox Signal 2013;18:714–729.
98.    Monaci S, Coppola F, Giuntini G, Roncoroni R, Acquati F, Sozzani S et al. Hypoxia enhances the expression of RNASET2 in human monocyte-derived dendritic cells: Role of PI3K/AKT pathway. Int J Mol Sci 2021;22:756-761.
99.    Feng M, Zhou S, Yu Y, Su Q, Li X, Lin W. Regulation of the migration of distinct dendritic cell subsets. Front Cell Dev Biol 2021;9:635-642.
100.    Liu J, Zhang X, Cheng Y, Cao X. Dendritic cell migration in inflammation and immunity. Cell Mol Immunol 2021;18:2461–2471.
101.    Diao G, Huang J, Zheng X, Sun X, Tian M, Han J et al. Prostaglandin E2 serves a dual role in regulating the migration of dendritic cells. Int J Mol Med 2021;47:207–218.
102.    Mir MA, Rashid M, Jan N. Cytokines and Chemokines in Tumor Growth and Progression. In: Cytokine and Chemokine Networks in Cancer. Springer; 2023. p. 33–77.
103.    Monaci S, Coppola F, Rossi D, Giuntini G, Filippi I, Marotta G et al. Hypoxia induces autophagy in human dendritic cells: Involvement of class III PI3K/Vps34. Cells 2022;11:1695-1702.
104.    Yang M, Liu Y, Ren G, Shao Q, Gao W, Sun J et al. Increased expression of surface CD44 in hypoxia-DCs skews helper T cells toward a Th2 polarization. Sci Rep 2015;5:136-142.
105.    Yang M, Ma C, Liu S, Sun J, Shao Q, Gao W et al. Hypoxia skews dendritic cells to a T helper type 2-stimulating phenotype and promotes tumour cell migration by dendritic cell-derived osteopontin. Immunology 2009;128:e237–e249.
106.    Rezaei R, Esmaeili Gouvarchin Ghaleh H, Farzanehpour M, Dorostkar R, Ranjbar R, Bolandian M et al. Combination therapy with CAR T cells and oncolytic viruses: A new era in cancer immunotherapy. Cancer Gene Ther 2022;29:647–660.
107.    Li M, Zhang Y, Jiang N, Ning C, Wang Q, Xu D et al. Anti–CD19 CAR T cells in refractory immune thrombocytopenia of SLE. N Engl J Med 2024;391:376–378.
108.    Asmamaw Dejenie T, Tiruneh G/Medhin M, Dessie Terefe G, Tadele Admasu F, Wale Tesega W, Chekol Abebe E. Current updates on generations, approvals, and clinical trials of CAR T-cell therapy. Hum Vaccin Immunother 2022;18:211-225.
109.    Zhao X, Xiong J, Li D, Zhang Y. Clinical trials of nanoparticle-enhanced CAR-T and NK cell therapies in oncology: Overcoming translational and clinical challenges - a mini review. Front Med (Lausanne) 2025;12:165-173.
110.    Berahovich R, Liu X, Zhou H, Tsadik E, Xu S, Golubovskaya V et al. Hypoxia selectively impairs CAR-T cells in vitro. Cancers 2019;11:602-610.
111.    Hatae R, Kyewalabye K, Yamamichi A, Chen T, Phyu S, Chuntova P et al. Enhancing CAR-T cell metabolism to overcome hypoxic conditions in the brain tumor microenvironment. JCI Insight 2024;9:e167891.
112.    Zhu X, Chen J, Li W, Xu Y, Shan J, Hong J et al. Hypoxia-responsive CAR-T cells exhibit reduced exhaustion and enhanced efficacy in solid tumors. Cancer Res 2024;84:84–100.
113.    Gao TA, Chen YY. Engineering next-generation CAR-T cells: Overcoming tumor hypoxia and metabolism. Annu Rev Chem Biomol Eng 2022;13:193–216.
114.    Jaspers JE, Khan JF, Godfrey WD, Lopez AV, Ciampricotti M, Rudin CM et al. IL-18–secreting CAR T cells targeting DLL3 are highly effective in small cell lung cancer models. J Clin Invest 2023;133:1–14.
115.    Garcia-Canaveras JC, Heo D, Trefely S, Leferovich J, Xu C, Philipson BI et al. CAR T-cells depend on the coupling of NADH oxidation with ATP production. Cells 2021;10:233-240.
116.    Shao J, Hou L, Liu J, Liu Y, Ning J, Zhao Q et al. Indoleamine 2, 3-dioxygenase 1 inhibitor-loaded nanosheets enhance CAR-T cell function in esophageal squamous cell carcinoma. Front Immunol 2021;12:661-670.
117.    Wittling MC, Cole AC, Brammer B, Diatikar KG, Schmitt NC, Paulos CM. Strategies for improving CAR T cell persistence in solid tumors. Cancers 2024;16:285-292.
118.    Andreu-Saumell I, Rodriguez-Garcia A, Mühlgrabner V, Gimenez-Alejandre M, Marzal B, Castellsagué J et al. CAR affinity modulates the sensitivity of CAR-T cells to PD-1/PD-L1-mediated inhibition. Nat Commun 2024;15:355-262.
119.    Najafi S, Mortezaee K. Modifying CAR-T cells with anti-checkpoints in cancer immunotherapy: A focus on anti PD-1/PD-L1 antibodies. Life Sci 2024;338:122387.
120.    Harrasser M, Gohil SH, Lau H, Della Peruta M, Muczynski V, Patel D et al. Inducible localized delivery of an anti-PD-1 scFv enhances anti-tumor activity of ROR1 CAR-T cells in TNBC. Breast Cancer Res 2022;24:39-48.
121.    Chen J, Zhu T, Jiang G, Zeng Q, Li Z, Huang X. Target delivery of a PD-1-TREM2 scFv by CAR-T cells enhances anti-tumor efficacy in colorectal cancer. Mol Cancer 2023;22:131-138.
122.    Fecikova S, Csaderova L, Belvoncikova P, Puzderova B, Bernatova K, Talac T et al. Can hypoxia marker carbonic anhydrase IX serve as a potential new diagnostic marker and therapeutic target of non-small cell lung cancer? Neoplasma 2024;71:1–13.
123.    Cui J, Zhang Q, Song Q, Wang H, Dmitriev P, Sun MY et al. Targeting hypoxia downstream signaling protein, CAIX, for CAR T-cell therapy against glioblastoma. Neuro Oncol 2019;21:1436–1446.
124.    Celichowski P, Turi M, Charvátová S, Radhakrishnan D, Feizi N, Chyra Z et al. Tuning CARs: Recent advances in modulating chimeric antigen receptor (CAR) T cell activity for improved safety, efficacy, and flexibility. J Transl Med 2023;21:197-208.
125.    Prinzing B, Krenciute G. Hypoxia-inducible CAR expression: An answer to the on-target/off-tumor dilemma? Cell Rep Med 2021;2:103-112.
126.    Chen L, Lin Y, Zhu X, Zhuo S, Li Z, Guo C et al. MCT1-mediated lactate shuttle to mitochondria governs macrophage polarization and modulates glucose homeostasis by affecting β cells. Adv Sci 2025;e14760.
127.    Zhao X, Ren T, Li S, Wang X, Hou R, Guan Z et al. A new perspective on the therapeutic potential of tumor metastasis: Targeting the metabolic interactions between TAMs and tumor cells. Int J Biol Sci 2024;20:5109–5125.
128.    Chen J, Huang Z, Chen Y, Tian H, Chai P, Shen Y et al. Lactate and lactylation in cancer. Signal Transduct Target Ther 2025;10:38-44.
129.    Gu X-Y, Yang J-L, Lai R, Zhou Z-J, Tang D, Hu L et al. Impact of lactate on immune cell function in the tumor microenvironment: Mechanisms and therapeutic perspectives. Front Immunol 2025;16:156-170.
130.    Plebanek MP, Xue Y, Nguyen Y-V, DeVito NC, Wang X, Holtzhausen A et al. A lactate-SREBP2 signaling axis drives tolerogenic dendritic cell maturation and promotes cancer progression. Sci Immunol 2024;9:eadi4191.
131.     Niveau C, Cettour-Cave M, Mouret S, Sosa Cuevas E, Pezet M, Roubinet B et al. MCT1 lactate transporter blockade re-invigorates anti-tumor immunity through metabolic rewiring of dendritic cells in melanoma. Nat Commun 2025;16:1083-1092.
132.    Jin X, Zhang N, Yan T, Wei J, Hao L, Sun C et al. Lactate-mediated metabolic reprogramming of tumor-associated macrophages: Implications for tumor progression and therapeutic potential. Front Immunol 2025;16:1573-1592.
133.    Zou W, Han Z, Wang Z, Liu Q. Targeting glutamine metabolism as a potential target for cancer treatment. J Exp Clin Cancer Res 2025;44:180-188.
134.    Chai X, Tao Q, Li L. Spatiotemporal heterogeneity of tumor glucose metabolism reprogramming: From single-cell mechanisms to precision interventions. Int J Mol Sci 2025;26:690-699.
135.    Deshpande NU, Bianchi A, Amirian H, De Castro Silva I, Rafie CI, Surnar B et al. Cell-specific nanoengineering strategy to disrupt tolerogenic signaling from myeloid-derived suppressor cells and invigorate antitumor immunity in pancreatic cancer. Cancer Immunol Immunother 2025;74:247–263.
136.    Martinenaite E, Lecoq I, Aaboe-Jørgensen M, Ahmad SM, Perez-Penco M, Glöckner HJ et al. Arginase-1-specific T cells target and modulate tumor-associated macrophages. J Immunother Cancer 2025;13:e009930.
137.    Liu ZQ, McGaha TL. New insights into tryptophan metabolism in cancer. Trends Cancer 2025;11:629-641
138.    Qi H, Ma X, Ma Y, Jia L, Liu K, Wang H. Mechanisms of HIF1A-mediated immune evasion in gastric cancer and the impact on therapy resistance. Cell Biol Toxicol 2024;40:87–104.
139.    Kim SW, Kim CW, Moon Y-A, Kim HS. Reprogramming of tumor-associated macrophages by metabolites generated from tumor microenvironment. Anim Cells Syst 2024;28:123–136.
140.    Chen W-L, Chang Y-L, Lin S-F, Protzer U, Isogawa M, Yang H-C et al. Differential regulation of calcium-NFAT signaling pathway by Akt isoforms: unraveling effector dynamics and exhaustion of cytotoxic T lymphocytes in tumor microenvironment. J Immunother Cancer 2025;13:e009827.
141.    Zhu J, Van den Eynde BJ. AHR and tryptophan metabolism: A collaborative dynamics of immune regulation. Genes Immun 2024;25:170–171.
142.    Liang P, Li Z, Chen Z, Chen Z, Jin T, He F et al. Metabolic reprogramming of glycolysis, lipids, and amino acids in tumors: Impact on CD8+ T cell function and targeted therapeutic strategies. FASEB J 2025;39:e70520.
143.    Nagy MZ, Plaza-Rojas LB, Boucher JC, Kostenko E, Austin AL, Tarhini AA et al. Effector T cells under hypoxia have an altered transcriptome similar to tumor-stressed T cells found in non-responsive melanoma patients. J Immunother Cancer 2025;13:e010153.
144.    Kennedy PR, Arvindam US, Phung SK, Ettestad B, Feng X, Li Y et al. Metabolic programs drive function of therapeutic NK cells in hypoxic tumor environments. Sci Adv 2024;10:eadn1849.
145.    Vitale M, Parodi M. Blocking HIF to Enhance NK Cells: Hints for new anti-tumor therapeutic strategies? Vaccines 2021;9:10-16.
146.    Singh N, Won M, Xu Y, Yoon C, Yoo J, Li M et al. Covalent organic framework nanoparticles: Overcoming the challenges of hypoxia in cancer therapy. Coord Chem Rev 2024;499:215-225.
147.    Yuan X, Ruan W, Bobrow B, Carmeliet P, Eltzschig HK. Targeting hypoxia-inducible factors: Therapeutic opportunities and challenges. Nat Rev Drug Discov 2024;23:175–200.
148.    Yan Y, Li H, Yao H, Cheng X. Nanodelivery systems delivering hypoxia-inducible factor-1 alpha short interfering RNA and antisense oligonucleotide for cancer treatment. Front Nanotechnol 2022;4:932976.
149.    Kheshtchin N, Arab S, Ajami M, Mirzaei R, Ashourpour M, Mousavi N et al. Inhibition of HIF-1α enhances anti-tumor effects of dendritic cell-based vaccination in a mouse model of breast cancer. Cancer Immunol Immunother 2016;65:1159–1167.
150.    Xu X-l, Yang Y-r, Mo X-f, Wei J-l, Zhang X-j, You Q-d. Design, synthesis, and evaluation of benzofuran derivatives as novel anti-pancreatic carcinoma agents via interfering the hypoxia environment by targeting HIF-1α pathway. Eur J Med Chem 2017;137:45–62.
151.    Soung N-K, Kim H-M, Asami Y, Kim DH, Cho Y, Naik R      et al. Mechanism of the natural product moracin-O derived MO-460 and its targeting protein hnRNPA2B1 on HIF-1α inhibition. Exp Mol Med 2019;51:1–14.
152.    Sapra P, Kraft P, Pastorino F, Ribatti D, Dumble M, Mehlig M et al. Potent and sustained inhibition of HIF-1α and downstream genes by a polyethyleneglycol-SN38 conjugate, EZN-2208, results in anti-angiogenic effects. Angiogenesis 2011;14:245–253.
153.    McDermott A, Tavassoli A. Hypoxia-inducible transcription factors: Architects of tumorigenesis and targets for anticancer drug discovery. Transcription 2024;1–32.
154.    Ozcan G. The hypoxia-inducible factor-1α in stemness and resistance to chemotherapy in gastric cancer: Future directions for therapeutic targeting. Front Cell Dev Biol 2023;11:108-117.
155.    Yang Y, Qian DZ, Rey S, Liu JO, Semenza GL. Daily administration of low-dose daunorubicin or doxorubicin inhibits hypoxia-inducible factor 1 and tumor vascularization. bioRxiv 2022;2022:1-30.
156.    Masoud GN, Li W. HIF-1α pathway: Role, regulation and intervention for cancer therapy. Acta Pharm Sin B 2015;5:378–389.
157.    Kim MJ, Ku JM, Choi Y-J, Lee SY, Hong SH, Kim HI et al. Reduced HIF-1α stability induced by 6-Gingerol inhibits lung cancer growth through the induction of cell death. Molecules 2022;27:210-225.
158.    Semenza GL. Pharmacologic targeting of hypoxia-inducible factors. Annu Rev Pharmacol Toxicol 2019;59:379–403.
159.    Cook KM, Hilton ST, Mecinović J, Motherwell WB, Figg WD, Schofield CJ. Epidithiodiketopiperazines block the interaction between hypoxia-inducible factor-1α (HIF-1α) and p300 by a zinc ejection mechanism. J Biol Chem 2009;284:26831–26838.
160.    Pu J, Liu T, Wang X, Sharma A, Schmidt-Wolf IG, Jiang L et al. Exploring the role of histone deacetylase and histone deacetylase inhibitors in the context of multiple myeloma: mechanisms, therapeutic implications, and future perspectives. Exp Hematol Oncol 2024;13:45-53.
161.    Porcu P, Hudgens S, Horwitz S, Quaglino P, Cowan R, Geskin L et al. Quality of life effect of the anti-CCR4 monoclonal antibody mogamulizumab versus vorinostat in patients with cutaneous T-cell lymphoma. Clin Lymphoma Myeloma Leuk 2021;21:97–105.
162.    Han J-Y, Oh SH, Morgillo F, Myers JN, Kim E, Hong WK et al. Hypoxia-inducible factor 1α and antiangiogenic activity of farnesyltransferase inhibitor SCH66336 in human aerodigestive tract cancer. J Natl Cancer Inst 2005;97:1272–1286.
163.    Dowlati A, Kluge A, Nethery D, Halmos B, Kern JA. SCH66336, inhibitor of protein farnesylation, blocks signal transducer and activators of transcription 3 signaling in lung cancer and interacts with a small molecule inhibitor of epidermal growth factor receptor/human epidermal growth factor receptor 2. Anti-Cancer Drugs 2008;19:9–16.
164.    Chen M, Karimpour PA, Elliott A, He D, Knifley T, Liu J et al. Integrin α6β4 upregulates PTPRZ1 through UCHL1-mediated Hif-1α nuclear accumulation to promote triple-negative breast cancer cell invasive properties. Cancers 2024;16:3683-3700.
165.    Öz Bedir BE, Terzi E, Şimşek E, Karakuş İ, Uysal TK, Ercan E et al. HIF-1 inhibitors: Differential effects of acriflavine and echinomycin on tumor associated CA-IX enzyme and VEGF in melanoma. Turk J Biochem 2021;46:679–684.
166.    Attia YM, Mokhlis HA, Ismail A, Doghish AS, Sobhy MH, Hassanein SS et al. 2-methoxyestradiol sensitizes tamoxifen-resistant MCF-7 breast cancer cells via downregulating HIF-1α. Med Oncol 2024;41:232-240.
167.    Luo F, Lu F-T, Cao J-X, Ma W-J, Xia Z-F, Zhan J-H et al. HIF-1α inhibition promotes the efficacy of immune checkpoint blockade in the treatment of non-small cell lung cancer. Cancer Lett 2022;531:39–56.
168.    Lazarus D, Peters C, Stockmann A, Eliasof S, Jayaraman L. CRLX101, an investigational nanoparticle-drug conjugate of camptothecin, demonstrates synergy with immunotherapy agents in preclinical models. Cancer Res 2016;76:320-331.
169.    Chiu DK-C, Tse AP-W, Xu IM-J, Di Cui J, Lai RK-H, Li LL et al. Hypoxia inducible factor HIF-1 promotes myeloid-derived suppressor cells accumulation through ENTPD2/CD39L1 in hepatocellular carcinoma. Nat Commun 2017;8:517-523.
170.    Fallah J, Brave MH, Weinstock C, Mehta GU, Bradford D, Gittleman H et al. FDA approval summary: belzutifan for von Hippel-Lindau disease–associated tumors. Clin Cancer Res 2022;28:4843–4848.
171.    Choueiri TK, Albiges L, Fan L, Perini RF, Zojwalla NJ, Powles T et al. Phase III study of the hypoxia-inducible factor 2α (HIF-2α) inhibitor MK-6482 versus everolimus in previously treated patients with advanced clear cell renal cell carcinoma (ccRCC). J Clin Oncol 2020; 38:27-39.
172.    Ma Y, Zhang H, Shen X, Yang X, Deng Y, Tian Y et al. Aptamer functionalized hypoxia-potentiating agent and hypoxia-inducible factor inhibitor combined with hypoxia-activated prodrug for enhanced tumor therapy. Cancer Lett 2024;598:217-243.
173.    Kiran P, Ghosh A, Pawar V, Maske P, Khan A, Srivastava R. Hypoxia-Targeting Drugs as New Cancer Chemotherapy Agents: Molecular Insights. In: Hypoxia in Cancer: Significance and Impact on Cancer Therapy. Springer; 2023. p. 351–368.
174.    Ajnai G, Cheng C-C, Kan T-C, Lu J-W, Rahayu S, Chiu A et al. Improving tirapazamine (TPZ) to target and eradicate hypoxia tumors by gold nanoparticle carriers. Pharmaceutics 2022;14:847-853.
175.    Mao X, McManaway S, Wilson WR, Hicks KO. Potentiation of the action of chemotherapeutic drugs by the hypoxia-activated prodrug SN30000 in multicellular tumor spheroids. Cancer Res 2019;78(13_Supplement):2440.
176.    Yamazaki H, Onoyama S, Gotani S, Deguchi T, Tamura M, Ohta H et al. Influence of the hypoxia-activated prodrug evofosfamide (TH-302) on glycolytic metabolism of canine glioma: a potential improvement in cancer metabolism. Cancers 2023;15:55-68.
177.    Hendricksen K, Cornel E, De Reijke T, Arentsen H, Chawla S, Witjes J. Phase 2 study of adjuvant intravesical instillations of apaziquone for high risk nonmuscle invasive bladder cancer. J Urol 2012;187:1195–1199.
178.    Phillips RM, Hendriks HR, Sweeney JB, Reddy G, Peters GJ. Efficacy, pharmacokinetic and pharmacodynamic evaluation of apaziquone in the treatment of non-muscle invasive bladder cancer. Expert Opin Drug Metab Toxicol 2017;13:783–791.
179.    Shamis SA, Edwards J, McMillan DC. The relationship between carbonic anhydrase IX (CAIX) and patient survival in breast cancer: systematic review and meta-analysis. Diagn Pathol 2023;18:46-59.
180.    McDonald PC, Chafe SC, Supuran CT, Dedhar S. Cancer therapeutic targeting of hypoxia induced carbonic anhydrase IX: From bench to bedside. Cancers 2022;14:329-365.
181.    Grajek J, Poleszczuk J. Carbonic anhydrase IX suppression shifts partial response to checkpoint inhibitors into complete tumor eradication: model-based investigation. Int J Mol Sci 2023;24:1068-1079.
182.    Liu B, Lu Y, Taledaohan A, Qiao S, Li Q, Wang Y. The promoting role of HK II in tumor development and the research progress of its inhibitors. Molecules 2023;29:75-85.
183.    Halpin-Veszeleiova K, Mallouh MP, Williamson LM, Apro AC, Botticello-Romero NR, Bahr C et al. Oxygen-carrying nanoemulsions and respiratory hyperoxia eliminate tumor hypoxia–induced immunosuppression. JCI Insight 2025;10:e174675.
184.    Halpin-Veszeleiova K, Mallouh M, Apro A, Romero N, Bahr C, Shin M et al. Oxygen carrying nanoemulsions and respiratory hyperoxia eliminate tumor hypoxia-induced suppression and improve cancer immunotherapy. JCI Insight 2025;10:e174675.
185.    Mashima T, Wakatsuki T, Kawata N, Jang M-K, Nagamori A, Yoshida H et al. Neutralization of the induced VEGF-A potentiates the therapeutic effect of an anti-VEGFR2 antibody on gastric cancer in vivo. Sci Rep 2021;11:151-162.
186.    Zhang Y, Chen P, Geng H, Li M, Chen S, Ma B et al. Development of a single-cell spatial metabolomics method for the characterization of cell–cell metabolic interactions. Anal Chem 2025;97:7986–7994.
187.    Yang G, Cheng J, Xu J, Shen C, Lu X, He C et al. Metabolic heterogeneity in clear cell renal cell carcinoma revealed by single-cell RNA sequencing and spatial transcriptomics. J Transl Med 2024;22:210-215.
188.    He Y, Diao S, Hou S, Li T, Meng W, Zhang J. Identification of novel potential hypoxia-inducible factor-1α inhibitors through machine learning and computational simulations. Front Chem 2025;13:158-163.
189.    Kao T-W, Bai G-H, Wang T-L, Shih I-M, Chuang C-M, Lo C-L et al. Novel cancer treatment paradigm targeting hypoxia-induced factor in conjunction with current therapies to overcome resistance. J Exp Clin Cancer Res 2023;42:171-205.
190.    Hao D, Meng Q, Jiang B, Lu S, Xiang X, Pei Q et al. Hypoxia-activated PEGylated paclitaxel prodrug nanoparticles for potentiated chemotherapy. ACS Nano 2022;16:14693–14702.
191.    Spiegelberg L, Houben R, Niemans R, de Ruysscher D, Yaromina A, Theys J et al. Hypoxia-activated prodrugs and (lack of) clinical progress: The need for hypoxia-based biomarker patient selection in phase III clinical trials. Clin Transl Radiat Oncol 2019;15:62–69.
192.    Choueiri TK, Powles T, Peltola K, de Velasco G, Burotto M, Suarez C et al. Belzutifan versus everolimus for advanced renal-cell carcinoma. N Engl J Med 2024;391:710–721.
193.    Wiley HE, Srinivasan R, Maranchie JK, Chhablani J, Iversen ABB, Kruse A et al. Oral hypoxia-inducible factor 2α inhibitor belzutifan in ocular von hippel-lindau disease: subgroup analysis of the single-arm phase 2 LITESPARK-004 study. Ophthalmology 2024;131:1324–1332.
194.    Brugarolas J, Obara G, Beckermann KE, Rini B, Lam ET, Hamilton J et al. A first-in-human phase 1 study of a tumor-directed RNA-Interference drug against HIF2α in patients with advanced clear cell renal cell carcinoma. Clin Cancer Res 2024;30:2402–2411.
195.    Tsang ES, Aggarwal RR, Bergsland EK, Calabrese S, Rozie A, Chaudhuri S, et al. Updated survival follow-up for phase Ib trial of the histone deacetylase inhibitor abexinostat with pazopanib in patients with solid tumor malignancies. JCO Precis Oncol 2024;8:e2400328.
196.    Borad MJ, Reddy SG, Bahary N, Uronis HE, Sigal D, Cohn AL, et al. Randomized phase II trial of gemcitabine plus TH-302 versus gemcitabine in patients with advanced pancreatic cancer. J Clin Oncol 2015;33:1475-1481.
197.    Chawla SP, Cranmer LD, Van Tine BA, Reed DR, Okuno SH, Butrynski JE, et al. Phase II study of the safety and antitumor activity of the hypoxia-activated prodrug TH-302 in combination with doxorubicin in patients with advanced soft tissue sarcoma. J Clin Oncol 2014;32:3299-3306.
198.    Kummar S, Raffeld M, Juwara L, Horneffer Y, Strassberger A, Allen D, et al. Multihistology, target-driven pilot trial of oral topotecan as an inhibitor of hypoxia-inducible factor-1α in advanced solid tumors. Clin Cancer Res 2011;17:5123-5131.
199.    Jayaprakash P, Ai M, Liu A, Budhani P, Bartkowiak T, Sheng J, et al. Targeted hypoxia reduction restores T cell infiltration and sensitizes prostate cancer to immunotherapy. J Clin Invest 2018;128:5137-49.
200.    Jeong W, Rapisarda A, Park SR, Kinders RJ, Chen A, Melillo G, et al. Pilot trial of EZN-2968, an antisense oligonucleotide inhibitor of hypoxia-inducible factor-1 alpha (HIF-1α), in patients with refractory solid tumors. Cancer Chemother Pharmacol 2014;73:343-348.
201.    Tang JH, Ma ZX, Huang GH, Xu QF, Xiang Y, Li N, et al. Downregulation of HIF-1α sensitizes U251 glioma cells to the temozolomide treatment. Exp Cell Res. 2016;343:148-158.
202.    Terzuoli E, Puppo M, Rapisarda A, Uranchimeg B, Cao L, Burger AM, et al. Aminoflavone, a ligand of the aryl hydrocarbon receptor, inhibits HIF-1α expression in an AhR-independent fashion. Cancer Res 2010;70:6837-6848.
203.    Chen G, Karzai F, Madan RA, Cordes LM, Bilusic M, Owens H, et al. CRLX101 plus olaparib in patients with metastatic castration-resistant prostate cancer. J Clin Oncol 2018;36 Suppl:TPS5092.
204.    Hutson TE, Escudier B, Esteban E, Bjarnason GA, Lim HY, Pittman KB, et al. Randomized phase III trial of temsirolimus versus sorafenib as second-line therapy after sunitinib in patients with metastatic renal cell carcinoma. J Clin Oncol 2014;32:760-767.
205.    Sun X, Kanwar J, Leung E, Lehnert K, Wang D, Krissansen G. Gene transfer of antisense hypoxia inducible factor-1α enhances the therapeutic efficacy of cancer immunotherapy. Gene Ther 2001;8:638-645.
206.    Mabjeesh NJ, Escuin D, LaVallee TM, Pribluda VS, Swartz GM, Johnson MS, et al. 2ME2 inhibits tumor growth and angiogenesis by disrupting microtubules and dysregulating HIF. Cancer Cell 2003;3:363-375.
207.     Bulle A, Dekervel J, Deschuttere L, Nittner D, Van Cutsem E, Verslype C, et al. Anti-cancer activity of acriflavine as metabolic inhibitor of OXPHOS in pancreas cancer xenografts. Onco Targets Ther 2020;13:6907-6916.
208.    Kong D, Park EJ, Stephen AG, Calvani M, Cardellina JH, Monks A, et al. Echinomycin, a small-molecule inhibitor of hypoxia-inducible factor-1 DNA-binding activity. Cancer Res 2005;65:9047-9055.
209.    Cook KM, Hilton ST, Mecinovic J, Motherwell WB, Figg WD, Schofield CJ. Epidithiodiketopiperazines block the interaction between hypoxia-inducible factor-1α and p300 by a zinc ejection mechanism. J Biol Chem 2009;284:26831-26838.
210.    Chun YS, Yeo EJ, Choi E, Teng CM, Bae JM, Kim MS, et al. Inhibitory effect of YC-1 on the hypoxic induction of erythropoietin and vascular endothelial growth factor in Hep3B cells. Biochem Pharmacol 2001;61:947-954.
211.    Li G, Xie B, Li X, Chen Y, Wang Q, Xu Y, et al. Down-regulation of survivin and hypoxia-inducible factor-1α by β-elemene enhances the radiosensitivity of lung adenocarcinoma xenograft. Cancer Biother Radiopharm 2012;27:56-64.
212.    Luna Yolba R, Visentin V, Hervé C, Chiche J, Ricci JE, Méneyrol J, et al. EVT‐701 is a novel selective and safe mitochondrial complex 1 inhibitor with potent anti‐tumor activity in models of solid cancers. Pharmacol Rese Pers 2021;9:e00854.
213.    Qian J, Rankin EB. Hypoxia-induced phenotypes that mediate tumor heterogeneity. Adv Exp Med Biol 2019;1136:43-55. 
214.    Yeung SJ, Pan J, Lee MH. Roles of p53, MYC and HIF-1 in regulating glycolysis—the seventh hallmark of cancer. Cell Mol Life Sci 2008;65:3981-3988.  
215.    Zhuang H, Wang S, Chen B, Zhang Z, Ma Z, Li Z, et al. Prognostic stratification based on HIF-1 signaling for evaluating hypoxic status and immune infiltration in pancreatic ductal adenocarcinomas. Front  Immunol 2021; 3:12-19.
216.    Hompland T, Fjeldbo CS, Lyng H. Tumor hypoxia as a barrier in cancer therapy: Why levels matter. Cancers 2021;13:499-512.
217.    Comerford KM, Wallace TJ, Karhausen J, Louis NA, Montalto MC, Colgan SP. Hypoxia-inducible factor-1-dependent regulation of the multidrug resistance (MDR1) gene. Cancer Res 2002;62:3387-3394.
218.    Shurin MR, Umansky V. Cross-talk between HIF and PD-1/PD-L1 pathways in carcinogenesis and therapy. J Clin Invest 2022; 132:645-651.
219.    Lee WS, Yang H, Chon HJ, Kim C. Combination of anti-angiogenic therapy and immune checkpoint blockade normalizes vascular-immune crosstalk to potentiate cancer immunity. Exp Mol Med 2020;52:1475-1485.