1. Sullivan EA, Zegers-Hochschild F, Mansour R, Ishihara O, de Mouzon J, Nygren KG, et al. International committee for monitoring assisted reproductive technologies (ICMART) world report: Assisted reproductive technology 2004. Hum Reprod 2013;28:1375–1390.
2. Dimarino AM, Caplan AI, Bonfield TL. Mesenchymal stem cells in tissue repair. Front Immunol 2013;4:201-209.
3. Murphy SV, Atala A, eds. Amniotic fluid and placental membranes: Unexpected sources of highly multipotent cells. New York: Thieme; 2013.
4. Batsali AK, Kastrinaki MC, Papadaki HA, Pontikoglou C. Mesenchymal stem cells derived from Wharton’s jelly of the umbilical cord: Biological properties and emerging clinical applications. Curr Stem Cell Res Ther 2013;8:144–155.
5. Cequier A, Vázquez FJ, Romero A, Vitoria A, Bernad E, Garcia-Martinez M, et al. The immunomodulation–immunogenicity balance of equine mesenchymal stem cells is differentially affected by immune cell response depending on inflammatory licensing and MHC compatibility. Front Vet Sci 2022;9:957153.
6. Wang J, Metheny L. Umbilical cord blood-derived cellular therapy: Advances in clinical development. Front Oncol 2023;13:1167266.
7. Yoo BY, Shin YH, Yoon HH, Seo YK, Song KY, Park JK. Application of mesenchymal stem cells derived from bone marrow and umbilical cord in human hair multiplication. J Dermatol Sci 2010;60:74–83.
8. Xu Y, Meng H, Li C, Hao M, Wang Y, Yu Z, et al. Umbilical cord-derived mesenchymal stem cells isolated by a novel explantation technique can differentiate into functional endothelial cells and promote revascularization. Stem Cells Dev 2010;19:1511–1522.
9. Zhang YN, Lie PC, Wei X. Differentiation of mesenchymal stromal cells derived from umbilical cord Wharton’s jelly into hepatocyte-like cells. Cytotherapy 2009;11:548–558.
10. Goszczynski D, Navarro M, Mutto A, Ross P. Embryonic stem cells as tools for in vitro gamete production in livestock. Anim 2023;17:100828.
11. Odroniec A, Olszewska M, Kurpisz M. Epigenetic markers in embryonal germ cell development and spermatogenesis. Basic Clin Androl 2023;33:6-28.
12. Ishikura Y, Ohta H, Sato T, Murase Y, Yabuta Y, Kojima Y, et al. In vitro reconstitution of whole male germ-cell development from mouse pluripotent stem cells. Cell Stem Cell 2021;28:2167–2179.
13. Cui YH, Chen W, Wu S, Wan CL, He Z. Generation of male germ cells in vitro from stem cells. Asian J Androl 2023;25:13–20.
14. Yang S, Liu Z, Wu S, Zou L, Cao Y, Xu H, et al. Meiosis resumption in human primordial germ cells from induced pluripotent stem cells by in vitro activation and reconstruction of ovarian nests. Stem Cell Res Ther. 2022;13:339.
15. Ehterami A, Salehi M, Farzamfar S, Vaez A, Samadian H, Sahrapeyma H, et al. In vitro and in vivo study of PCL/collagen wound dressing loaded with insulin–chitosan nanoparticles on cutaneous wound healing in rat model. Int J Biol Macromol 2018; 117:601-609.
16. Farzamfar S, Naseri-Nosar M, Vaez A, Esmaeilpour F, Ehterami A, Sahrapeyma H, et al. Neural tissue regeneration by a gabapentin-loaded cellulose acetate/gelatin wet-electrospun scaffold. Cellulose. 2018;25:1229–1238.
17. Brougham CM, Levingstone TJ, Shen N, Cooney GM, Jockenhoevel S, Flanagan TC, et al. Freeze-drying as a novel biofabrication method for achieving controlled microarchitecture within large natural biomaterial scaffolds. Adv Healthc Mater 2017;6:1700598.
18. Fereshteh Z. Freeze-drying technologies for 3D scaffold engineering. In: Functional 3D Tissue Engineering Scaffolds. Amsterdam: Elsevier; 2018. p. 151–174.
19. Fereshteh Z, Fathi M, Bagri A, Boccaccini AR. Preparation and characterization of aligned porous PCL/zein scaffolds as drug-delivery systems via improved unidirectional freeze-drying. Mater Sci Eng C 2016;68:613–622.
20. Ghorbani F, Nojehdehian H, Zamanian A. Physicochemical and mechanical properties of freeze-cast hydroxyapatite–gelatin scaffolds with dexamethasone-loaded PLGA microspheres for hard tissue engineering. Mater Sci Eng C 2016;69:208–220.
21. Samadian H, Salehi M, Farzamfar S, Vaez A, Ehterami A, Sahrapeyma H, et al. In vitro and in vivo evaluation of electrospun cellulose acetate/gelatin/hydroxyapatite nanocomposite mats for wound dressing applications. Artif Cells Nanomed Biotechnol 2018;46:964–974.
22. Zamani S, Ehterami A, Vaez A, Naeiji M, Maghsoodifar H, Sadeghi-Douki SAH, et al. Natural and synthetic polymers in burn wound healing: A review. J Biomater Sci Polym Ed 2026;37:118-183.
23. Lukin I, Erezuma I, Maeso L, Zarate J, Desimone MF, Al-Tel TH, et al. Progress in gelatin as biomaterial for tissue engineering. Pharmaceutics 2022;14:1177-195.
24. Salehi M, Farzamfar S, Bastami F, Tajerian R. Fabrication and characterization of electrospun PLLA/collagen nanofibrous scaffold coated with chitosan to sustain release of aloe vera gel for skin tissue engineering. Biomed Eng Appl Basis Commun 2016;28:1650035.
25. Shahrezaee M, Salehi M, Keshtkari S, Oryan A, Kamali A, Shekarchi B. In vitro and in vivo investigation of PLA/PCL scaffold coated with metformin-loaded gelatin nanocarriers in regeneration of critical-sized bone defects. Nanomedicine 2018;14:2061–2073.
26. Slahi N, Hadjighassem MR, Joghataei MT, Bakhtiyari M, Ayyoubiyan M, Asadi MH, et al. Effects of PLLA nanofiber scaffold on proliferation of frozen-thawed neonatal mouse spermatogonial stem cells. Anat Sci J 2012;9:280–294.
27. Chen R, Qi QL, Wang MT, Li QY. Therapeutic potential of naringin: An overview. Pharm Biol 2016;54:3203–3210.
28. Rong W, Wang J, Liu X, Jiang L, Wei F, Hu X, et al. Naringin treatment improves functional recovery by increasing BDNF and VEGF expression after spinal cord injury. Neurochem Res 2012;37:1615–1623.
29. Rong W, Pan YW, Cai X, Song F, Zhao Z, Xiao SH, et al. Mechanism of naringin-enhanced remyelination after spinal cord injury. Neural Regen Res 2017;12:470–477.
30. Lin FX, Du SX, Liu DZ, Hu QX, Yu GY, Wu CC, et al. Naringin promotes osteogenic differentiation of bone marrow stromal cells via Foxc2 expression through IHH pathway. Am J Transl Res 2016;8:5098-5107.
31. Fan J, Li J, Fan Q. Naringin promotes differentiation of bone marrow stem cells into osteoblasts by regulating microRNA-20a and PPARγ. Mol Med Rep 2015;12:4759–4765.
32. Lam J, Katti P, Biete M, Mungai M, AshShareef S, Neikirk K, et al. Universal approach to analyzing transmission electron microscopy with ImageJ. Cells 2021;10:2177-2193.
33. Tayeed MH, Tehranchi M, Ehterami A, Shanei F, Taleghani F, Semyari H, et al. Silybin-loaded PCL/gelatin/nanoclay nanocomposite scaffolds enhance bone regeneration: In vitro & in vivo study. J Biomater Appl 2025;40:105–117.
34. Akbari R, Antonini C. Contact angle measurements: From existing methods to an open-source tool. Adv Colloid Interface Sci 2021;294:102470.
35. Zamani S, Salehi M, Ehterami A, Fauzi MB, Abbaszadeh-Goudarzi G. Curcumin-loaded alginate hydrogel for skin wound healing: gene expression analysis. J Biomater Appl 2024;38:957–974.
36. Namazi H, Rakhshaei R, Hamishehkar H, Kafil HS. Antibiotic-loaded carboxymethylcellulose/MCM-41 nanocomposite hydrogel films as potential wound dressing. Int J Biol Macromol 2016;85:327–334.
37. Doudi S, Kamalabadi-Farahani M, Atashi A, Ai J, Cheraghali D, Zamani S, et al. Injectable multifunctional hydrogel containing sphingosine-1-phosphate and human acellular amniotic membrane for skin wound healing. Iran J Basic Med Sci 2024;27:1134–1147.
38. Zamani S, Rezaei Kolarijani N, Naeiji M, Vaez A, Maghsoodifar H, Sadeghi-Douki SAH, et al. Carboxymethyl cellulose/gelatin hydrogel loaded with omega-3 for skin regeneration. J Biomater Appl 2024;39:377–395.
39. Esmaeili S, Rahmati M, Zamani S, Djalilian AR, Arabpour Z, Salehi M. Eggshell membrane powder as natural biomaterial for skin regeneration: separation process comparison. Skin Res Technol 2024;30:e70038.
40. Nguyen LT, Tran NT, Than UTT, Nguyen MQ, Tran AM, Do PTX, et al. Optimization of human umbilical cord blood-derived mesenchymal stem cell isolation in serum- and xeno-free conditions. Stem Cell Res Ther 2022;13:15-33.
41. De Schauwer C, Meyer E, Cornillie P, De Vliegher S, Van de Walle GR, Hoogewijs M, et al. Isolation and characterization of equine umbilical cord blood mesenchymal stromal cells. Tissue Eng Part C Methods 2011;17:1061–1070.
42. Marie D, Rigaut-Jalabert F, Vaulot D. Improved protocol for flow cytometry analysis of phytoplankton cultures and natural samples. Cytometry A 2014;85:962–968.
43. Renshaw S. Immunohistochemistry and immunocytochemistry. In: Essential Methods in Immunohistochemistry and Immunocytochemistry. Oxford: Wiley-Blackwell; 2017. p. 35–102.
44. Wei X, Peng G, Zheng S, Wu X. Differentiation of umbilical cord mesenchymal stem cells into steroidogenic cells versus bone marrow MSCs. Cell Prolif 2012;45:101–110.
45. Sibov TT, Severino P, Marti L, Pavon L, Oliveira D, Tobo P, et al. Mesenchymal stem cells from umbilical cord blood: Isolation parameters and adipogenic differentiation. Cytotechnology 2012;64:511–521.
46. Huang HN, Kuo CW, Hung YL, Yang CH, Hsieh YH, Lin YC, et al. High-dynamic-range imaging enhances PD-L1 evaluation for 3D pathology in NSCLC. Sci Rep 2024;14:15176.
47. Shanmugam PST, Sampath T, Jagadeeswaran I. Implantation. In: Biocompatibility Protocols for Medical Devices and Materials. Amsterdam: Elsevier; 2023. p. 83–90.
48. Shanmugam PST, Sampath T, Jagadeeswaran I. Biocompatibility protocols for medical devices and materials. Amsterdam: Elsevier; 2023.
49. Seyedi D, Salehi M, Zamani S, Cheraghali D, Dehghani F, Mehrabi M. Alginate/PVA nanofibrous wound dressings containing dragon’s blood improve burn wound healing in animal model. J Biomed Mater Res B Appl Biomater 2025;113:e35553.
50. Scheepens A, Tan K, Paxton JW. Improving oral bioavailability of polyphenols through designed synergies. Genes Nutr 2010;5:75-87.
51. Gilchrist RB, Thompson JG. Oocyte maturation: Emerging concepts and technologies to improve developmental potential in vitro. Theriogenology 2007;67:6–15.
52. Eslahi N, Hadjighassem MR, Joghataei MT, Mirzapour T, Bakhtiyari M, Shakeri M, et al. Poly-L-lactic acid nanofiber scaffold effect on mouse spermatogonial stem cell culture. Int J Nanomedicine 2013;8:4563–4576.
53. Capuana E, Lopresti F, Ceraulo M, La Carrubba V. Poly-L-lactic acid biomaterials for regenerative medicine: Processing and applications review. Polymers 2022;14:1153-1181.
54. Yarahmadi A, Dousti B, Karami-Khorramabadi M, Afkhami H. Chitosan/gelatin biodegradable polymers: Potential applications review. Front Bioeng Biotechnol 2024;12:1397668.
55. Fath-Bayati L, Naserpour L, Khoshandam M, Jannatifar R, Fazaeli H. Advances in 3D culture systems for spermatogonial stem cell preservation and differentiation. Int J Reprod Biomed 2023;21:681–696.
56. Heo SJ, Szczesny SE, Kim DH, Saleh KS, Mauck RL. Electrospun scaffolds maintain MSC stemness, mechano-responsivity, and differentiation potential. J Orthop Res 2018;36:808–815.
57. Bashiri Z, Zahiri M, Allahyari H, Esmaeilzade B. Proliferation of human spermatogonial stem cells on optimized PCL/gelatin nanofibrous scaffolds. Andrologia 2022;54:e14380.
58. Wang D, Ma W, Wang F, Dong J, Wang D, Sun B, et al. Naringin stimulates Wnt/β-catenin signaling to improve bone development via AMPK and Akt. Cell Physiol Biochem 2015;36:1563–1576.
59. Yang C, Liu W, Zhang X, Zeng B, Qian Y. Naringin increases osteoprotegerin in fibroblasts via Wnt/β-catenin pathway. J Orthop Surg Res 2020;15:600-606.
60. Fan J, Li J, Fan Q. Naringin promotes bone marrow stem cell differentiation into osteoblasts by microRNA-20a regulation. Mol Med Rep 2015;12:4759–4765.
61. Wang H, Liang J, Wang Y, Zheng J, Liu Y, Zhao Y, et al. Naringin restores oxidative stress-impaired osteogenic differentiation via Wnt/β-catenin and PI3K/Akt pathways. Sci Rep 2024;14:14047-14060.
62. Yang S, Yuan Q, Niu M, Hou J, Zhu Z, Sun M, et al. BMP4 promotes mouse iPS cell differentiation to male germ cells via Smad1/5, Gata4, Id1 and Id2. Reproduction 2017;153:211–220.
63. Yang Y, Feng Y, Feng X, Liao S, Wang X, Gan H, et al. BMP4 cooperates with retinoic acid to induce differentiation markers in mouse spermatogonia. Stem Cells Int 2016;2016:9536192.
64. Amidi F, Hoseini MA, Nia KN, Habibi M, Kajbafzadeh AM, Mazaheri Z, et al. Germ-like cell differentiation potential of human Wharton’s jelly-derived MSCs in co-culture with placenta cells with BMP4 and retinoic acid. Iran J Basic Med Sci 2015;18:325-333.
65. Shirzeyli MH, Tayyebiazar A, Aliakbari F, Ghasemi F, Eini F, Shirzeyli FH, et al. Comparison of BMP4 efficacy on in vitro differentiation of murine adipose and bone marrow MSCs into primordial germ cells. Res Pharm Sci 2022;17:123–133.
66. Diao L, Turek PJ, John CM, Fang F, Reijo Pera RA. Roles of spermatogonial stem cells in spermatogenesis and fertility restoration. Front Endocrinol 2022;13:895528.
67. Guo M, Liu F, Wang W, Liu Z, Zhu Z, Liu Y, et al. Retracted: Naringin promotes osteogenic/odontogenic differentiation of dental pulp stem cells via Wnt/β-catenin. Evid Based Complement Alternat Med 2022;2022:4505471.
68. Vlajković S, Čukuranović R, Daković Bjelaković M, Stefanović V. Therapeutic use of spermatogonial stem cells in male infertility: Brief overview. Sci World J 2012;2012:374151.