1. Delano MJ, Ward PA. The immune system’s role in sepsis progression, resolution, and long‐term outcome. Immunol Rev 2016; 274: 330-353.
2. Confalonieri M, Salton F, Fabiano F. Acute respiratory distress syndrome. Eur Respir Rev 2017; 26: 160116-160123.
3. Chopra M, Reuben JS, Sharma AC. Acute lung injury: Apoptosis and signaling mechanisms. Exp Biol Med 2009; 234: 361-371.
4. Tang J, Xu L, Zeng Y, Gong F. Effect of gut microbiota on LPS-induced acute lung injury by regulating the TLR4/NF-kB signaling pathway. Int Immunopharmacol 2021; 91: 107272.
5. Sul O-J, Ra SW. Quercetin prevents LPS-induced oxidative stress and inflammation by modulating NOX2/ROS/NF-kB in lung epithelial cells. Molecules 2021; 26: 6949-6960.
6. Liang P, Zhou S, Yuan Z, Zhang L, Jiang Z, Yu Q. Obeticholic acid improved triptolide/lipopolysaccharide‐induced hepatotoxicity by inhibiting caspase‐11‐GSDMD pyroptosis pathway. J Appl Toxicol 2023; 43: 599-614.
7. Shah D, Das P, Acharya S, Agarwal B, Christensen DJ, Robertson SM, et al. Small immunomodulatory molecules as potential therapeutics in experimental murine models of acute lung injury (ALI)/acute respiratory distress syndrome (ARDS). Int J Mol Sci 2021; 22: 2573-2591.
8. Fan L, Fan Y, Liu L, Tao W, Shan X, Dong Y, et al. Chelerythrine attenuates the inflammation of lipopolysaccharide-induced acute lung inflammation through NF-κB signaling pathway mediated by Nrf2. Front Pharmacol 2018; 9: 1047-1057.
9. Mu X, Hur S. Immunogenicity of in vitro-transcribed RNA. Acc Chem Res 2021; 54: 4012-4023.
10. Park WS, Lee J, Na G, Park S, Seo S-K, Choi JS, et al. Benzyl isothiocyanate attenuates inflammasome activation in Pseudomonas aeruginosa LPS-stimulated THP-1 cells and exerts regulation through the MAPKs/NF-κB pathway. Int J Mol Sci 2022; 23: 1228.
11. Yue L, Qidian L, Jiawei W, Rou X, Miao H. Acute iron oxide nanoparticles exposure induced murine eosinophilic airway inflammation via TLR2 and TLR4 signaling. Environ Toxicol 2022; 37: 925-935.
12. Xue J, Suarez JS, Minaai M, Li S, Gaudino G, Pass HI, et al. HMGB1 as a therapeutic target in disease. J Cell Physiol 2021; 236: 3406-3419.
13. Ding X, Li S, Zhu L. Potential effects of HMGB1 on viral replication and virus infection-induced inflammatory responses: A promising therapeutic target for virus infection-induced inflammatory diseases. Cytokine Growth Factor Rev 2021; 62: 54-61.
14. Ge Y, Huang M, Yao Y-m. The effect and regulatory mechanism of high mobility group box-1 protein on immune cells in inflammatory diseases. Cells 2021; 10: 1044-1070.
15. Caldeira C, Cunha C, Vaz AR, Falcão AS, Barateiro A, Seixas E, et al. Key aging-associated alterations in primary microglia response to beta-amyloid stimulation. Front Aging Neurosci 2017; 9: 277-300.
16. Chang H-Y, Chen Y-C, Lin J-G, Lin I-H, Huang H-F, Yeh C-C, et al. Asatone prevents acute lung injury by reducing expressions of NF-κ B, MAPK and inflammatory cytokines. Am J Chin Med 2018; 46: 651-671.
17. Huang C-Y, Deng J-S, Huang W-C, Jiang W-P, Huang G-J. Attenuation of lipopolysaccharide-induced acute lung injury by hispolon in mice, through regulating the TLR4/PI3K/Akt/mTOR and Keap1/Nrf2/HO-1 pathways, and suppressing oxidative stress-mediated ER stress-induced apoptosis and autophagy. Nutrients 2020; 12: 1742-1764.
18. Luo L, Huang F, Zhong S, Ding R, Su J, Li X. Astaxanthin attenuates ferroptosis via Keap1-Nrf2/HO-1 signaling pathways in LPS-induced acute lung injury. Life Sci 2022; 311:121091.
19. Jadeja RN, Upadhyay KK, Devkar RV, Khurana S. Naturally occurring Nrf2 activators: Potential in treatment of liver injury. Oxid Med Cell Longev 2016; 2016: 3453926-3453939.
20. Nguyen T, Nioi P, Pickett CB. The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress. Journal of biological chemistry 2009; 284:13291-13295.
21. Schönthal AH. Endoplasmic reticulum stress: Its role in disease and novel prospects for therapy. Scientifica 2012; 2012: 857516-857542.
22. Shi C, Sun Y, Zheng Z, Zhang X, Song K, Jia Z, et al. Antimicrobial activity of syringic acid against Cronobacter sakazakii and its effect on cell membrane. Food Chem 2016; 197: 100-106.
23. Srinivasulu C, Ramgopal M, Ramanjaneyulu G, Anuradha C, Kumar CS. Syringic acid (SA)‒a review of its occurrence, biosynthesis, pharmacological and industrial importance. Biomed Pharmacother 2018; 108: 547-557.
24. Ji J, Yang X, Flavel M, Shields ZP-I, Kitchen B. Antioxidant and anti-diabetic functions of a polyphenol-rich sugarcane extract. J Am Coll Nutr 2019; 38: 670-680.
25. Rashedinia M, Alimohammadi M, Shalfroushan N, Khoshnoud MJ, Mansourian M, Azarpira N, et al. Neuroprotective effect of syringic acid by modulation of oxidative stress and mitochondrial mass in diabetic rats. Biomed Res Int 2020; 2020: 8297984-829796.
26. Periyannan V, Veerasamy V. Syringic acid may attenuate the oral mucosal carcinogenesis via improving cell surface glycoconjugation and modifying cytokeratin expression. Toxicol Rep 2018; 5: 1098-1106.
27. Gheena S, Ezhilarasan D, Shree Harini K, Rajeshkumar S. Syringic acid and silymarin concurrent administration inhibits sodium valproate‐induced liver injury in rats. Environ Toxicol 2022; 37: 2143-2152.
28. Köse D, Yüksel TN, Halıcı Z, Çadırcı E, Gürbüz MA. The effects of agomelatine treatment on lipopolysaccharide-induced septic lung injuries in rats. Eurasian J Med 2021; 53: 127-131.
29. Bass JJ, Wilkinson DJ, Rankin D, Phillips BE, Szewczyk NJ, Smith K, et al. An overview of technical considerations for Western blotting applications to physiological research. Scand J Med Sci Sports 2017; 27: 4-25.
30. Niu X, Mu Q, Li W, Huang H, Yao H, Li H. Protective effects of chelerythrine against lipopolysaccharide-induced endotoxic shock in mice. Inflammation 2014; 37: 1968-1975.
31. Zhang Y, Du Z, Zhou Q, Wang Y, Li J. Remifentanil attenuates lipopolysaccharide-induced acute lung injury by downregulating the NF-κB signaling pathway. Inflammation 2014; 37: 1654-1660.
32. Jiang W, Luo F, Lu Q, Liu J, Li P, Wang X, et al. The protective effect of Trillin LPS-induced acute lung injury by the regulations of inflammation and oxidative state. Chem Biol Interact 2016; 243: 127-134.
33. Zhang Y, Han Z, Jiang A, Wu D, Li S, Liu Z, et al. Protective effects of pterostilbene on lipopolysaccharide-induced acute lung injury in mice by inhibiting NF-κB and activating Nrf2/HO-1 signaling pathways. Front Pharmacol 2021; 11: 591836-591848.
34. Li Y, Zhang L, Wang X, Wu W, Qin R. Effect of Syringic acid on antioxidant biomarkers and associated inflammatory markers in mice model of asthma. Drug Dev Res 2019; 80: 253-261.
35. Meng L, Li L, Lu S, Li K, Su Z, Wang Y, et al. The protective effect of dexmedetomidine on LPS-induced acute lung injury through the HMGB1-mediated TLR4/NF-κB and PI3K/Akt/mTOR pathways. Mol Immunol 2018; 94: 7-17.
36. Saadat S, Beheshti F, Askari VR, Hosseini M, Mohamadian Roshan N, Boskabady MH. Aminoguanidine affects systemic and lung inflammation induced by lipopolysaccharide in rats. Respir Res 2019; 20: 96-109.
37. Hong H, Lou S, Zheng F, Gao H, Wang N, Tian S, et al. Hydnocarpin D attenuates lipopolysaccharide-induced acute lung injury via MAPK/NF-κB and Keap1/Nrf2/HO-1 pathway. Phytomedicine 2022; 101: 154143.
38. Zhao L, Zhang Z, Li P, Gao Y, Shi Y. Bakuchiol regulates TLR4/MyD88/NF-κB and Keap1/Nrf2/HO-1 pathways to protect against LPS-induced acute lung injury in vitro and in vivo. Naunyn Schmiedebergs Arch Pharmacol 2024; 397: 3301-3312.
39. Somade OT, Ajiboye BO, Osukoya OA, Jarikre TA, Oyinloye BE. Syringic acid ameliorates testicular oxidative stress via the conservation of endogenous antioxidant markers and inhibition of the activated Nrf2-Keap1-NQO1-HO1 signaling in methyl cellosolve-administered rats. Pharmacol Res Modern Chin Med 2023; 6: 100207.
40. Kojima M, Gimenes-Junior JA, Chan TW, Eliceiri BP, Baird A, Costantini TW, et al. Exosomes in postshock mesenteric lymph are key mediators of acute lung injury triggering the macrophage activation via Toll-like receptor 4. Faseb J 2018; 32: 97-110.
41. Fitzgerald KA, Rowe DC, Barnes BJ, Caffrey DR, Visintin A, Latz E, et al. LPS-TLR4 signaling to IRF-3/7 and NF-kappaB involves the toll adapters TRAM and TRIF. J Exp Med 2003; 198: 1043-1055.
42. Ben DF, Yu XY, Ji GY, Zheng DY, Lv KY, Ma B, et al. TLR4 mediates lung injury and inflammation in intestinal ischemia-reperfusion. J Surg Res 2012; 174: 326-333.
43. Li L, Zhou B, Xu H, Shi H, Gao L, Ge B. Zinc-loaded black phosphorus multifunctional nanodelivery system combined with photothermal therapy have the potential to treat prostate cancer patients infected with COVID-19. Front Endocrinol (Lausanne) 2022; 13: 872411-872425.
44. Yu H, Lin L, Zhang Z, Zhang H, Hu H. Targeting NF-κB pathway for the therapy of diseases: mechanism and clinical study. Signal Transduct Target Ther 2020; 5: 209-232.
45. Zuo W, Tian F, Ke J, Jiang C, Yang Y, He C. Mechanisms and research progress of traditional chinese medicine regulating NF-κB in the treatment of acute lung injury/acute respiratory distress syndrome. CMNP 2024; 4: e93-e105.
46. Liu J, Huang X, Hu S, He H, Meng Z. Dexmedetomidine attenuates lipopolysaccharide induced acute lung injury in rats by inhibition of caveolin-1 downstream signaling. Biomed Pharmacother 2019; 118: 109314-109321.
47. Alsharif KF, Almalki AA, Alsanie WF, Alzahrani KJ, Kabrah SM, Elshopakey GE, et al. Protocatechuic acid attenuates lipopolysaccharide-induced septic lung injury in mice: The possible role through suppressing oxidative stress, inflammation and apoptosis. J Food Biochem 2021; 45: e13915.
48. Boskabadi J, Askari VR, Hosseini M, Boskabady MH. Immunomodulatory properties of captopril, an ACE inhibitor, on LPS-induced lung inflammation and fibrosis as well as oxidative stress. Inflammopharmacology 2018; 27: 639-647.
49. Boskabady M, Khazdair MR, Bargi R, Saadat S, Memarzia A, Mohammadian Roshan N, et al. Thymoquinone ameliorates lung inflammation and pathological changes observed in lipopolysaccharide‐induced lung injury. Evid Based Complement Alternat Med 2021; 2021: 6681729-6681739.
50. Gholamnezhad Z, Safarian B, Esparham A, Mirzaei M, Esmaeilzadeh M, Boskabady MH. The modulatory effects of exercise on lipopolysaccharide-induced lung inflammation and injury: A systemic review. Life Sci 2022; 293: 120306.
51. He X, Chen GF, Tao WT, Huang XJ, Lin Y, Sun J, et al. Tetramethylpyrazine mitigates lipopolysaccharide-induced acute lung injury by inhibiting the HMGB1/TLR4/NF-κB signaling pathway in mice. J Thorac Dis 2025; 17: 1605-1616.
52. Demir EA, Demir S, Kazaz IO, Kucuk H, Alemdar NT, Gecici OF, et al. Syringic acid ameliorates ischemia/reperfusion-induced testicular injury in rats via suppressing of HMGB1/NF-κB axis and endoplasmic reticulum stress. Eur J Trauma Emerg Surg 2023; 49: 1595-1602.
53. Yan X, Cheng X, Zhou L, He X, Zheng W, Chen H. Dexmedetomidine alleviates lipopolysaccharide-induced lung injury in Wistar rats. Oncotarget 2017; 8: 44410-44417.
54. Okkay IF, Okkay U, Gundogdu OL, Bayram C, Mendil AS, Ertugrul MS, et al. Syringic acid protects against thioacetamide-induced hepatic encephalopathy: Behavioral, biochemical, and molecular evidence. Neurosci Lett 2022; 769: 136385.
55. Fu C, Dai X, Yang Y, Lin M, Cai Y, Cai S. Dexmedetomidine attenuates lipopolysaccharide-induced acute lung injury by inhibiting oxidative stress, mitochondrial dysfunction and apoptosis in rats. Mol Med Rep 2017; 15: 131-138.
56. Zou J, Yan J, Lu Y, Yu Z, Zhang K, Han Q, et al. Cyclic peptide Keap1-Nrf2 protein-protein interaction inhibitors: Design, synthesis, and in vivo treatment of acute lung injury. J Med Chem 2024; 67: 4889-4903.