1. Ingawale DK, Mandlik SK, Naik SR. Models of hepatotoxicity and the underlying cellular, biochemical and immunological mechanism (s): A critical discussion. Environ Toxicol Pharmacol
2014;37:118-133.
2. Yin C, Evason KJ, Asahina K, Stainier DY. Hepatic stellate cells in liver development, regeneration, and cancer. J Clin Invest 2013;123:1902-1910.
3. Chen WY, Chen CJ, Liao JW, Mao FC. Chromium attenuates hepatic damage in a rat model of chronic cholestasis. Life Sci 2009;84:606-614.
4. Cruz A, Padillo FJ, Granados J, Túnez I, Muñoz MC, Briceño J, et al. Effect of melatonin on cholestatic oxidative stress under constant light exposure. Cell Biochem Funct 2003; 21:377-380.
5. Yang JH, Kim SC, Kim KM, Jang CH, Cho SS, Kim SJ, et al. Isorhamnetin attenuates liver fibrosis by inhibiting TGF-β/Smad signaling and relieving oxidative stress. Eur J Pharmacol 2016;783:92-102.
6. Han JM, Kim HG, Choi MK, Lee JS, Park HJ, Wang JH, et al. Aqueous extract of Artemisia iwayomogi Kitamura attenuates cholestatic liver fibrosis in a rat model of bile duct ligation. Food Chem Toxicol 2012;50:3505-3513.
7. Karkhaneh L, Yaghmaei P, Parivar K, Sadeghizadeh M, Ebrahim-Habibi A. Effect of trans-chalcone on atheroma plaque formation, liver fibrosis and adiponectin gene expression in cholesterol-fed NMRI mice. Pharmacol Rep 2016;68:720-727.
8. Singh H, Sidhu S, Chopra K, Khan MU. Hepatoprotective effect of trans-chalcone on experimentally induced hepatic injury in rats: inhibition of hepatic inflammation and fibrosis. Can J Physiol Pharmacol 2016;94:879-887.
9. Morry J, Ngamcherdtrakul W, Yantasee W. Oxidative stress in cancer and fibrosis: Opportunity for therapeutic intervention with antioxidant compounds, enzymes, and nanoparticles. Redox Biol 2017;11:240-253.
10. Casini A, Pinzani M, Milani S, Grappone C, Galli G, Jezequel AM, et al. Regulation of extracellular matrix synthesis by transforming growth factor β1 in human fat-storing cells. Gastroenterology 1993;105:245-253.
11. Ramadori G, Knittel T, Odenthal M, Schwögler S, Neubauer K, Zum Büschenfelde KHM. Synthesis of cellular fibronectin by rat liver fat-storing (Ito) cells: Regulation by cytokines. Gastroenterology 1992;103:1313-1321.
12. Sawdey MS, Loskutoff DJ. Regulation of murine type 1 plasminogen activator inhibitor gene expression in vivo. Tissue specificity and induction by lipopolysaccharide, tumor necrosis factor-alpha, and transforming growth factor-beta. J Clin Invest 1991;88:1346-1353.
13. Inagaki Y, Okazaki I. Emerging insights into transforming growth factor β Smad signal in hepatic fibrogenesis. Gut. 2007;56:284-292.
14. Adorini L, Trauner M. FXR agonists in NASH treatment. J Hepatol 2023;79:1317-1331.
15. Pan PH, Wang YY, Lin SY, Liao SL, Chen YF, Huang WC, et al. Plumbagin ameliorates bile duct ligation-induced cholestatic liver injury in rats. Biomed Pharmacother 2022;151:113133.
16. Apolinário AC, de Lima Damasceno BPG, de Macêdo Beltrão NE, Pessoa A, Converti A, da Silva JA. Inulin-type fructans: A review on different aspects of biochemical and pharmaceutical technology. Carbohydr Polym 2014;101:368-378.
17. Liu J, Lu JF, Wen XY, Kan J, Jin CH. Anti-oxidant and protective effect of inulin and catechin grafted inulin against CCl4-induced liver injury. Int J Biol Macromol 2015;72:1479-1484.
18. Barbero-Becerra V, Juárez-Hernández E, Chávez-Tapia NC, Uribe M. Inulin as a clinical therapeutic intervention in metabolic associated fatty liver disease. Food Rev Int 2021;38:336-348.
19. Kalantari H, Asadmasjedi N, Abyaz Mr, Mahdavinia M, Mohammadtaghvaei N. Protective effect of inulin on methotrexate- induced liver toxicity in mice. Biomed Pharmacother 2019;110:943-950.
20. Sugatani J, Wada T, Osabe M, Yamakawa K, Yoshinari K, Miwa M. Dietary inulin alleviates hepatic steatosis and xenobiotics-induced liver injury in rats fed a high-fat and high-sucrose diet: Association with the suppression of hepatic cytochrome P450 and hepatocyte nuclear factor 4alpha expression. Drug Metab Dispos 2006;34:1677-1687.
21. Uchinami H, Seki E, Brenner DA, D’Armiento J. Loss of MMP 13 attenuates murine hepatic injury and fibrosis during cholestasis. Hepatol 2006;44:420-429.
22. Gross Jr JB, Reichen J, Zeltner TB, Zimmermann A. The evolution of changes in quantitative liver function tests in a rat model of biliary cirrhosis: Correlation with morphometric measurement of hepatocyte mass. Hepatology 1987;7:457-763.
23. Rifai N. Tietz textbook of clinical chemistry and molecular diagnostics-e-book: Elsevier Health Sci; 2017.
24. Moss D. Clinical enzymology. Nature 1971;233:505-505.
25. Sant’Anna LB, Cargnoni A, Ressel L, Vanosi G, Parolini O. Amniotic membrane application reduces liver fibrosis in a bile duct ligation rat model. Cell Transplant 2011;20:441-453.
26. French SW, Miyamoto K, Ohta Y, Geoffrion Y. Pathogenesis of experimental alcoholic liver disease in the rat. Methods Achiev Exp Pathol 1988;13:181-207.
27. Perez MJ, Briz O. Bile-acid-induced cell injury and protection. World J of Gastroenterol 2009;15:1677-1689.
28. Sokol RJ, Straka MS, Dahl R, Devereaux MW, Yerushalmi B, Gumpricht E, et al. Role of oxidant stress in the permeability transition induced in rat hepatic mitochondria by hydrophobic bile acids. Pediatr Res 2001;49:519-531.
29. Ale-Ebrahim M, Eidi A, Mortazavi P, Tavangar SM, Minaei Tehrani D. Hepatoprotective and antifibrotic effects of sodium molybdate in a rat model of bile duct ligation. J Trace Elem Med Biol 2015;29:242-248.
30. Ramaiah SK. A toxicologist guide to the diagnostic interpretation of hepatic biochemical parameters. Food Chem Toxicol 2007;45:1551-1557.
31. Javadi F, Ale-Ebrahim M, Mohseni-Moghaddam P, Mortazavi P, Mousavi Z, Asghari A. Hepatoprotective and antifibrotic effects of trans-chalcone against bile duct ligation-induced liver fibrosis in rats. Iran J Basic Med Sci 2023;26:1194-1201.
32. Du H, Zhao A, Wang Q, Yang X, Ren D. Supplementation of inulin with various degree of polymerization ameliorates liver injury and gut microbiota dysbiosis in high fat-fed obese mice. J Agric Food Chem 2020;68:779-787.
33. Bao T, He F, Zhang X, Zhu L, Wang Z, Lu H, et al. Inulin exerts beneficial effects on non-alcoholic fatty liver disease via modulating gut microbiome and suppressing the lipopolysaccharide-toll-like receptor 4-mψ-nuclear factor-κb-nod-like receptor protein 3 pathway via gut-liver axis in mice. Front Pharmacol 2020;11:558525.
34. Yang X, He F, Zhang Y, Xue J, Li K, Zhang X, et al. Inulin ameliorates alcoholic liver disease via suppressing LPS‐TLR 4‐Mψ axis and modulating gut microbiota in mice. Alcohol Clin Exp Res
2019;43:411-424.
35. Chong CYL, Orr D, Plank LD, Vatanen T, O’Sullivan JM, Murphy R. Randomised double-blind placebo-controlled trial of inulin with metronidazole in non-alcoholic fatty liver disease (NAFLD). Nutrients 2020;12:937-951.
36. Trauner M, Meier PJ, Boyer JL. Molecular pathogenesis of cholestasis. N Engl J Med 1998;339:1217-1227.
37. Catalá A. Lipid peroxidation modifies the picture of membranes from the “Fluid Mosaic Model” to the “Lipid Whisker Model”. Biochim 2012;94:101-109.
38. Salehi V, Malekiasl H, Azizi M, Nouripour-Sisakht S, Gharaghani M, Saberinejad AA, et al. Oliveria decumbens extract exhibits hepatoprotective effects against bile duct ligation-induced liver injury in rats by reducing oxidative stress. Hepat Mon 2023;23: e131160.
39. Sadeghi H, Azarmehr N, Razmkhah F, Sadeghi H, Danaei N, Omidifar N, et al. The hydroalcoholic extract of watercress attenuates protein oxidation, oxidative stress, and liver damage after bile duct ligation in rats. J Cell Biochem 2019;120:14875-14884.
40. Nabil MAH, Hnaa AH, Hanaa MS, Amr MM. A promising chemosesitization role of inulin in management of experimentally induced hepatocellular carcinoma. Iraq Med J 2017;1:83-87.
41. Kawasoe J, Uchida Y, Kawamoto H, Miyauchi T, Watanabe T, Saga K, et al. Propionic acid, induced in gut by an inulin diet, suppresses inflammation and ameliorates liver ischemia and reperfusion injury in mice. Front Immunol 2022;13:862503.
42. Ji H, Jiang JY, Xu Z, Kroeger EA, Lee SS, Liu H, et al. Change in lipid profile and impairment of endothelium-dependent relaxation of blood vessels in rats after bile duct ligation. Life Sci 2003;73:1253-1263.
43. Longo M, Crosignani A, Podda M. Hyperlipidemia in chronic cholestatic liver disease. Curr Treat Options Gastroenterol 2001;4:111-114.
44. Delgado-Villa MJ, Ojeda ML, Rubio JM, Murillo ML, Sánchez OC. Beneficial role of dietary folic acid on cholesterol and bile acid metabolism in ethanol-fed rats. J Stud Alcohol Drugs 2009;70:615-622.
45. Nuño‐Lámbarri N, Barbero‐Becerra VJ, Uribe M, Chávez‐Tapia NC. Elevated cholesterol levels have a poor prognosis in a cholestasis scenario. J Biochem Mol Toxicol 2017;31:1-6.
46. Claudel T, Sturm E, Duez H, Torra IP, Sirvent A, Kosykh V, et al. Bile acid-activated nuclear receptor FXR suppresses apolipoprotein AI transcription via a negative FXR response element. J Clin Invest 2002;109:961-971.
47. Sugatani J, Osabe M, Wada T, Yamakawa K, Yamazaki Y, Takahashi T, et al. Comparison of enzymatically synthesized inulin, resistant maltodextrin and clofibrate effects on biomarkers of metabolic disease in rats fed a high-fat and high-sucrose (cafeteria) diet. Eur J Nutr 2008;47:192-200.
48. Hao H, Cao L, Jiang C, Che Y, Zhang S, Takahashi S, et al. Farnesoid X receptor regulation of the NLRP3 inflammasome underlies cholestasis-associated sepsis. Cell Metabol 2017;25:856-867.
49. Wang YD, Chen WD, Wang M, Yu D, Forman BM, Huang W. Farnesoid X receptor antagonizes nuclear factor κB in hepatic inflammatory response. Hepatology 2008;48:1632-1643.
50. Khan RS, Bril F, Cusi K, Newsome PN. Modulation of insulin resistance in nonalcoholic fatty liver disease. Hepatology 2019;70:711-724.
51. Chávez-Talavera O, Tailleux A, Lefebvre P, Staels B. Bile acid control of metabolism and inflammation in obesity, type 2 diabetes, dyslipidemia, and nonalcoholic fatty liver disease. Gastroenterology 2017;152:1679-94.
52. Alipour MR, Jeddi S, Karimi‐Sales E. Trans‐Chalcone inhibits high‐fat diet‐induced disturbances in FXR/SREBP‐1c/FAS and FXR/Smad‐3 pathways in the kidney of rats. J Food Biochem 2020;44:e13476.
53. Wang R, Ren Y, Bao T, Wang T, Li Y, Liu Y, et al. Inulin activates FXR-FGF15 signaling and further increases bile acids excretion in non-alcoholic fatty liver disease mice. Biochem Biophys Res Commun 2022;600:156-162.
54. Carino A, Biagioli M, Marchianò S, Scarpelli P, Zampella A, Limongelli V, et al. Disruption of TFGβ-SMAD3 pathway by the nuclear receptor SHP mediates the antifibrotic activities of BAR704, a novel highly selective FXR ligand. Pharmacol Res 2018;131:17-31.
55. Ji K, Zhang M, Du L, Liu Y, Xu C, He N, et al. Targeting the gut microbiota with inulin: a novel approach for the management of irradiation-induced colonic fibrosis. Res Sq 2022;https://doi.org/10.21203/rs.3.rs-1394836/v1.
56. Liu RM, Desai LP. Reciprocal regulation of TGF-β and reactive oxygen species: A perverse cycle for fibrosis. Redox Biol 2015;6:565-577.
57. Nakano H, Nakajima A, Sakon-Komazawa S, Piao JH, Xue X, Okumura K. Reactive oxygen species mediate crosstalk between NF-κB and JNK. Cell Death Differ 2006;13:730-737.
58. Chan EC, Peshavariya HM, Liu GS, Jiang F, Lim SY, Dusting GJ. Nox4 modulates collagen production stimulated by transforming growth factor β1 in vivo and in vitro. Biochem Biophys Res Commun 2013;430:918-925.