1. Lee BB, Cripps RA, Fitzharris M, Wing PC. The global map for traumatic spinal cord injury epidemiology: update 2011, global incidence rate. Spinal Cord 2014; 52:110-116.
2. Yunta M, Nieto-Díaz M, Esteban FJ, Caballero-López M, Navarro-Ruíz R, Reigada D, et al. MicroRNA Dysregulation in the Spinal Cord following Traumatic Injury. Plos One 2012; 7:e34534.
3. Nieto-Diaz M, Esteban FJ, Reigada D, Muñoz-Galdeano T, Yunta M, Caballero-López M, et al. MicroRNA dysregulation in spinal cord injury: causes, consequences and therapeutics. Front Cell Neurosci 2014; 8:53.
4. Ning B, Gao L, Liu RH, Liu Y, Zhang NS, Chen ZY, et al. microRNAs in Spinal Cord Injury: Potential Roles and Therapeutic Implications. Int J Biol Sci 2014; 10:997-1006.
5. Bareyre FM, Schwab ME. Inflammation, degeneration and regeneration in the injured spinal cord: insights from DNA microarrays. Trends Neurosci 2003; 26:555.
6. Nesic O, Svrakic NM, Xu GY, Mcadoo D, Westlund KN, Hulsebosch CE, et al. DNA microarray analysis of the contused spinal cord: Effect of NMDA receptor inhibition. J Neurosci Res 2002; 68:406.
7. Krichevsky AM. MicroRNA profiling: from dark matter to white matter, or identifying new players in neurobiology. Scientificworldjournal 2007; 7:155.
8. Li Z, Yu X, Shen J, Law PTY, Chan MTV, Wu WKK. MicroRNA expression and its implications for diagnosis and therapy of gallbladder cancer. Oncotarget 2015; 6:13914-13921.
9. Friedman RC, Farh KK, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 2008; 19:92-105.
10. Hu JZ, Huang JH, Zeng L, Wang G, Cao M, Lu HB. Anti-apoptotic effect of microRNA-21 after contusion spinal cord injury in rats. J Neurotrauma 2013; 30:1349.
11. Mourelatos Z, Dostie J, Paushkin S, Sharma A, Charroux B, Abel L, et al. miRNPs: a novel class of ribonucleoproteins containing numerous microRNAs. Genes Dev 2002; 16:720.
12. Li M, Liu Z, Zhang Z, Liu G, Sun S, Sun C. miR-103 promotes 3T3-L1 cell adipogenesis through AKT/mTOR signal pathway with its target being MEF2D. Biol Chem 2015; 396:235-244.
13. Martello G, Rosato A, Ferrari F, Manfrin A, Cordenonsi M, Dupont S, et al. A MicroRNA targeting dicer for metastasis control. Cell 2010; 141:1195-1207.
14. Trajkovski M, Hausser J, Soutschek J, Bhat B, Akin A, Zavolan M, et al. MicroRNAs 103 and 107 regulate insulin sensitivity. Nature 2011; 474:649-653.
15. Parra P, Serra F, Palou A. Expression of adipose microRNAs is sensitive to dietary conjugated linoleic acid treatment in mice. Plos One 2010; 5:e13005.
16. Li G, Li Y, Li X, Ning X, Li M, Yang G. MicroRNA identity and abundance in developing swine adipose tissue as determined by Solexa sequencing. J Cell Biochem 2011; 112:1318–1328.
17. Xie HM, Bing L, Lodish HF. MicroRNAs induced during adipogenesis that accelerate fat cell development are downregulated in obesity. Diabetes 2009; 58:1050-1057.
18. Moncini S, Salvi A, Zuccotti P, Viero G, Quattrone A, Barlati S, et al. The role of miR-103 and miR-107 in regulation of CDK5R1 expression and in cellular migration. Plos One 2011; 6:e20038.
19. Zhang H, Wu F, Kong X, Yang J, Chen H, Deng L, et al. Nerve growth factor improves functional recovery by inhibiting endoplasmic reticulum stress-induced neuronal apoptosis in rats with spinal cord injury. J Transl Med 2014; 12:130.
20. Guo X, Chen Y, Liu Q, Wu J, Wang L, Tang X, et al. Ac-cel, a novel antioxidant, protects against hydrogen peroxide-induced injury in PC12 cells via attenuation of mitochondrial dysfunction. J Mol Neurosci 2013; 50:453-461.
21. Li R, Yin F, Guo YY, Zhao KC, Ruan Q, Qi YM. Knockdown of ANRIL aggravates H2O2-induced injury in PC-12 cells by targeting microRNA-125a. Biomed Pharmacother 2017; 92:952.
22. Zhou Y, Cui Z, Xia X, Liu C, Zhu X, Cao J, et al. Matrix metalloproteinase-1 (MMP-1) expression in rat spinal cord injury model. Cell Mol Neurobiol 2014; 34:1151-1163.
23. Liebscher T, Schnell L, Schnell D, Scholl J, Schneider R, Gullo M, et al. Nogo‐A antibody improves regeneration and locomotion of spinal cord–injured rats. Ann Neurol 2005; 58:706.
24. Hutchison ER, Okun E, Mattson MP. The Therapeutic Potential of microRNAs in Nervous System Damage, Degeneration, and Repair. Neuromolecular Med 2009; 11:153.
25. Nakanishi K, Nakasa T, Tanaka N, Ishikawa M, Yamada K, Yamasaki K, et al. Responses of microRNAs 124a and 223 following spinal cord injury in mice. Spinal Cord 2010; 48:192-196.
26. Liu NK, Wang XF, Lu QB, Xu XM. Altered microRNA expression following traumatic spinal cord injury. Exp Neurol 2009; 219:424-429.
27. Bhalala OG, Srikanth M, Kessler JA. The emerging roles of microRNAs in CNS injuries. Nat Rev Neurol 2013; 9:328-339.
28. Hu JZ, Huang JH, Zeng L, Wang G, Cao M, Lu HB. Anti-apoptotic effect of microRNA-21 after contusion spinal cord injury in rats. J Neurotrauma 2013; 30:1349-1360.
29. Jee MK, Jung JS, Im YB, Jung SJ, Kang SK. Silencing of miR20a is crucial for Ngn1-mediated neuroprotection in injured spinal cord. Hum Gene Ther 2012; 23:508-520.
30. Hong Z, Feng Z, Sai Z, Tao S. PER3, a novel target of miR-103, plays a suppressive role in colorectal cancer in vitro. BMB Rep 2014; 47:500-505.
31. Chen HY, Lin YM, Chung HC, Lang YD, Lin CJ, Huang J, et al. miR-103/107 promote metastasis of colorectal cancer by targeting the metastasis suppressors DAPK and KLF4. Cancer Res 2012; 72:3631.
32. Park JK, Peng H, Katsnelson J, Yang W, Kaplan N, Dong Y, et al. MicroRNAs-103/107 coordinately regulate macropinocytosis and autophagy. J Cell Biol 2016; 215:667-685.
33. Peng H, Park J, Katsnelson J, Yang W, He C, Lavker RM. miRs-103/107 maintain autophagy: a process critical to stem cell maintenance. Invest Ophthalmol Vis Sci 2015; 56:2069-2069.
34. Gubbay J, Collignon J, Koopman P, Capel B, Economou A, Münsterberg A, et al. A gene mapping to the sex-determining region of the mouse Y chromosome is a member of a novel family of embryonically expressed genes. Nature 1990; 346:245-250.
35. Pevny LH, Nicolis SK. Sox2 roles in neural stem cells. Int J Biochem Cell Biol 2010; 42:421-424.
36. Episkopou V. SOX2 functions in adult neural stem cells. Trends Neurosci 2005; 28:219-221.
37. Miyagi S, Masui S, Niwa H, Saito T, Shimazaki T, Okano H, et al. Consequence of the loss of Sox2 in the developing brain of the mouse. FEBS Lett 2008; 582:2811-2815.
38. Jiang J, Li Z, Yu C, Chen M, Tian S, Sun C. MiR-1181 inhibits stem cell-like phenotypes and suppresses SOX2 and STAT3 in human pancreatic cancer. Cancer Lett 2015; 356:962-970.
39. Kim NH, Lee MY, Park SJ, Choi JS, Oh MK, Kim IS. Auranofin blocks interleukin‐6 signalling by inhibiting phosphorylation of JAK1 and STAT3. Immunology 2007; 122:607.
40. Tsuda M, Kohro Y, Yano T, Tsujikawa T, Kitano J, Tozaki-Saitoh H, et al. JAK-STAT3 pathway regulates spinal astrocyte proliferation and neuropathic pain maintenance in rats. Brain 2011; 134:1127-1139.
41. Yamauchi K, Osuka K, Takayasu M, Usuda N, Nakazawa A, Nakahara N, et al. Activation of JAK/STAT signalling in neurons following spinal cord injury in mice. J Neurochem 2006; 96:1060-1070.
42. Herrmann JE, Imura T, Song B, Qi J, Ao Y, Nguyen TK, et al. STAT3 is a Critical Regulator of Astrogliosis and Scar Formation after Spinal Cord Injury. J Neurosci 2008; 28:7231-7243.
43. Thoennissen NH, Iwanski GB, Doan NB, Okamoto R, Lin P, Abbassi S,et al. Cucurbitacin B Induces Apoptosis byInhibition of the JAK/STAT Pathway and Potentiates Antiproliferative Effects of Gemcitabine on Pancreatic Cancer Cells. Cancer Res 2009; 69:5876-5884.
44. Xu Z, Wang BR, Wang X, Kuang F, Duan XL, Jiao XY, et al. ERK1/2 and p38 mitogen-activated protein kinase mediate iNOS-induced spinal neuron degeneration after acute traumatic spinal cord injury. Life Sci 2006; 79:1895-1905.
45. Genovese T, Esposito E, Mazzon E, Muià C, Di PR, Meli R, et al. Evidence for the role of mitogen-activated protein kinase signaling pathways in the development of spinal cord injury. J Pharmacol Exp Ther 2008; 325:100-114.
46. Ding D, Xu H, Liang Q, Xu L, Zhao Y, Wang Y. Over-expression of Sox2 in C3H10T1/2 cells inhibits osteoblast differentiation through Wnt and MAPK signalling pathways. Int Orthop 2012; 36:1087-1094.
47. Chen S, Li X, Lu D, Xu Y, Mou W, Wang L, et al. SOX2 regulates apoptosis through MAP4K4-survivin signaling pathway in human lung cancer cells. Carcinogenesis 2014; 35:613.
48. Gao X, Chen G, Gao C, Zhang DH, Kuan SF, Stabile LP, et al. MAP4K4 is a novelMAPK/ERKpathway regulator required for lung adenocarcinoma maintenance. Mol Oncol 2017; 11:628-639.
49. Collins CS, Hong J, Sapinoso L, Zhou Y, Liu Z, Micklash K, et al. A small interfering RNA screen for modulators of tumor cell motility identifies MAP4K4 as a promigratory kinase. Proc Natl Acad Sci U S A 2006; 103:3775-3780.