1.Smith RJ, Bale JF, White KR. Sensorineural hearing loss in children. The Lancet 2005; 365:879-890.
2.Kochhar A, Hildebrand MS, Smith RJ. Clinical aspects of hereditary hearing loss. Genetics in Medicine 2007; 9:393-408.
3.Mattox DE, Simmons FB. Natural history of sudden sensorineural hearing loss. Annals of Otology, Rhinology & Laryngology 1977; 86:463-480.
4.Pandya A. Nonsyndromic hearing loss and deafness, mitochondrial. 1993.
5.Van Camp G, Smith RJ. Hereditary hearing loss homepage. 2006.
6.Cremers CWRJ, Smith R. Genetic hearing impairment: its clinical presentations: Karger Medical and Scientific Publishers; 2002.
7.Nance WE. The genetics of deafness. Mental retardation and developmental disabilities research reviews 2003; 9:109-119.
8.Zou D, Erickson C, Kim E-H, Jin D, Fritzsch B, Xu P-X. Eya1 gene dosage critically affects the development of sensory epithelia in the mammalian inner ear. Human Molecular Genetics 2008; 17:3340-3356.
9.Panel GEoCHLE. Genetics evaluation guidelines for the etiologic diagnosis of congenital hearing loss. Genetics in Medicine 2002; 4:162.
10.Tang HY, Fang P, Ward PA, Schmitt E, Darilek S, Manolidis S, et al. DNA sequence analysis of GJB2, encoding connexin 26: observations from a population of hearing impaired cases and variable carrier rates, complex genotypes, and ethnic stratification of alleles among controls. American Journal of Medical Genetics Part A 2006; 140:2401-2415.
11.Noori-Daloii M. Mutation analysis of GJB2 and GJB6 genes and the genetic linkage analysis of five common DFNB loci in the Iranian families with autosomal recessive non-syndromic hearing loss. Journal of Sciences, Islamic Republic of Iran 2010; 21.
12.Chaleshtori MH, Farhud D, Taylor R, Hadavi V, Patton M, Afzal A. Deafness–associated connexin 26 gene (GJB2) mutations in Iranian population. Iranian Journal of Public Health 2002; 31:75-79.
13.Liu Y, Wei X, Kong X, Guo X, Sun Y, Man J, et al. Targeted Next-Generation Sequencing for Clinical Diagnosis of 561 Mendelian Diseases. PLoS ONE 2015; 10:e0133636.
14.Stitziel NO, Kiezun A, Sunyaev S. Computational and statistical approaches to analyzing variants identified by exome sequencing. Genome biology 2011; 12:227.
15.Browser E. Exome Aggregation Consortium Website. 2015.
16.Stenson PD, Ball EV, Mort M, Phillips AD, Shiel JA, Thomas NS, et al. Human gene mutation database (HGMD®): 2003 update. Human mutation 2003; 21:577-581.
17.Schwarz JM, Rödelsperger C, Schuelke M, Seelow D. MutationTaster evaluates disease-causing potential of sequence alterations. Nature methods 2010; 7:575-576.
18.Guex N, Peitsch MC. SWISS‐MODEL and the Swiss‐Pdb Viewer: an environment for comparative protein modeling. electrophoresis 1997; 18:2714-2723.
19.Haas J, Roth S, Arnold K, Kiefer F, Schmidt T, Bordoli L, et al. The Protein Model Portal—a comprehensive resource for protein structure and model information. Database 2013; 2013.
20.Wu L, Pan L, Wei Z, Zhang M. Structure of MyTH4-FERM domains in myosin VIIa tail bound to cargo. Science 2011; 331:757-760.
21.Kaplan W, Littlejohn TG. Swiss-PDB viewer (deep view). Briefings in bioinformatics 2001; 2:195-197.
22.Capriotti E, Fariselli P, Casadio R. I-Mutant2.0: predicting stability changes upon mutation from the protein sequence or structure. Nucleic Acids Research 2005; 33:W306-W310.
23.Worth CL, Preissner R, Blundell TL. SDM—a server for predicting effects of mutations on protein stability and malfunction. Nucleic acids research 2011; 39:W215-W222.
24.Zambrano R, Jamroz M, Szczasiuk A, Pujols J, Kmiecik S, Ventura S. AGGRESCAN3D (A3D): server for prediction of aggregation properties of protein structures. Nucleic acids research 2015; 43:W306-W313.
25.Weber KL, Sokac AM, Berg JS, Cheney RE, Bement WM. A microtubule-binding myosin required for nuclear anchoring and spindle assembly. Nature 2004; 431:325-329.
26.Van Laer L, Cryns K, Smith RJ, Van Camp G. Nonsyndromic hearing loss. Ear and hearing 2003; 24:275-288.
27.Ari Ş, Arikan M. Next-Generation Sequencing: Advantages, Disadvantages, and Future. Plant Omics: Trends and Applications: Springer; 2016. p. 109-135.
28.Yan D, Tekin M, Blanton SH, Liu XZ. Next-generation sequencing in genetic hearing loss. Genetic testing and molecular biomarkers 2013; 17:581-587.
29.Well D, Blanchard S, Kaplan J, Guilford P, Gibson F, Walsh J, et al. Defective myosin VIIA gene responsible for Usher syndrome type IB. Nature 1995; 374:60-61.
30.Hartman MA, Spudich JA. The myosin superfamily at a glance. J Cell Sci 2012; 125:1627-1632.
31.Gerber S, Bonneau D, Gilbert B, Munnich A, Dufier J-L, Rozet J-M, et al. USH1A: chronicle of a slow death. The American Journal of Human Genetics 2006; 78:357-359.
32.Asgharzade S, Reiisi S, Tabatabaiefar MA, Chaleshtori MH. Screening of Myo7A Mutations in Iranian Patients with Autosomal Recessive Hearing Loss from West of Iran. Iranian Journal of Public Health 2017; 46:76-82.
33.Mermall V, Post PL, Mooseker MS. Unconventional myosins in cell movement, membrane traffic, and signal transduction. Science 1998; 279:527-533.
34.Boëda B, El‐Amraoui A, Bahloul A, Goodyear R, Daviet L, Blanchard S, et al. Myosin VIIa, harmonin and cadherin 23, three Usher I gene products that cooperate to shape the sensory hair cell bundle. The EMBO Journal 2002; 21:6689-6699.
35.Reiisi S, Tabatabaiefar MA, Sanati MH, Chaleshtori MH. Screening of DFNB3 in Iranian families with autosomal recessive non-syndromic hearing loss reveals a novel pathogenic mutation in the MyTh4 domain of the MYO15A gene in a linked family. Iranian journal of basic medical sciences 2016; 19:772.
36.Planelles-Herrero VJ, Blanc F, Sirigu S, Sirkia H, Clause J, Sourigues Y, et al. Myosin MyTH4-FERM structures highlight important principles of convergent evolution. Proceedings of the National Academy of Sciences of the United States of America 2016; 113:E2906-E2915.
37.Yu I-M, Planelles-Herrero VJ, Sourigues Y, Moussaoui D, Sirkia H, Kikuti C, et al. Myosin 7 and its adaptors link cadherins to actin. Nature Communications 2017; 8:ncomms15864.
38.Cordes FS, Bright JN, Sansom MS. Proline-induced distortions of transmembrane helices. Journal of molecular biology 2002; 323:951-960.
39.Fukuoka H, Kanda Y, Ohta S, Usami S-i. Mutations in the WFS1 gene are a frequent cause of autosomal dominant nonsyndromic low-frequency hearing loss in Japanese. Journal of human genetics 2007; 52:510-515.
40.Goncalves A, Matos T, Simoes-Teixeira H, Machado MP, Simao M, Dias O, et al. WFS1 and non-syndromic low-frequency sensorineural hearing loss: a novel mutation in a Portuguese case. Gene 2014; 538:288-291.
41.Cryns K, Pfister M, Pennings RJ, Bom SJ, Flothmann K, Caethoven G, et al. Mutations in the WFS1 gene that cause low-frequency sensorineural hearing loss are small non-inactivating mutations. Human genetics 2002; 110:389-394.
42.Abdelhak S, Kalatzis V, Heilig R, Compain S, Samson D, Vincent C, et al. A human homologue of the Drosophila eyes absent gene underlies branchio-oto-renal (BOR) syndrome and identifies a novel gene family. Nature genetics 1997; 15:157-164.
43.Xu P-X, Adams J, Peters H, Brown MC, Heaney S, Maas R. Eya1-deficient mice lack ears and kidneys and show abnormal apoptosis of organ primordia. Nature genetics 1999; 23:113-117.
44.Pourquié O. Publisher’s Note: Eya1 controls cell polarity, spindle orientation, cell fate and Notch signaling in distal embryonic lung epithelium by El-Hashash et al. Development doi: 10.1242/dev. 058479. Dev Biol 2017; 350:112-126.
45.Spahiu L, Merovci B, Ismaili Jaha V, Batalli Këpuska A, Jashari H. Case report of a novel mutation of the EYA1 gene in a patient with branchio-oto-renal syndrome. Balkan Journal of Medical Genetics 2016; 19:91-94.
46.Krug P, Morinière V, Marlin S, Koubi V, Gabriel HD, Colin E, et al. Mutation screening of the EYA1, SIX1, and SIX5 genes in a large cohort of patients harboring branchio‐oto‐renal syndrome calls into question the pathogenic role of SIX5 mutations. Human mutation 2011; 32:183-190.
47.Song MH, Kwon T-J, Kim HR, Jeon JH, Baek J-I, Lee W-S, et al. Mutational analysis of EYA1, SIX1 and SIX5 genes and strategies for management of hearing loss in patients with BOR/BO syndrome. PloS one 2013; 8:e67236.
48.Sanggaard KM, Rendtorff ND, Kjaer KW, Eiberg H, Johnsen T, Gimsing S, et al. Branchio–oto–renal syndrome: detection of EYA1 and SIX1 mutations in five out of six Danish families by combining linkage, MLPA and sequencing analyses. European Journal of Human Genetics 2007; 15:1121-1131.
49.Matsunaga T, Okada M, Usami S-I, Okuyama T. Phenotypic consequences in a Japanese family having branchio-oto-renal syndrome with a novel frameshift mutation in the gene EYA1. Acta oto-laryngologica 2007; 127:98-104.
50.Kwon M-J, Boo SH, Kwon M-J, Boo SH, Kim H-J, Cho Y-S, et al. A novel splice site mutation in the EYA1 gene in a Korean family with branchio-oto (BO) syndrome. Acta oto-laryngologica 2009; 129:688-693.
51.Washington NL, Haendel MA, Mungall CJ, Ashburner M, Westerfield M, Lewis SE. Linking human diseases to animal models using ontology-based phenotype annotation. PLoS Biol 2009; 7:e1000247.
52.Chen A, Francis M, Ni L, Cremers CW, Kimberling WJ, Sato Y, et al. Phenotypic manifestations of branchiootorenal syndrome. American Journal of Medical Genetics Part A 1995; 58:365-370.
53.Propst EJ, Blaser S, Gordon KA, Harrison RV, Papsin BC. Temporal Bone Findings on Computed Tomography Imaging in Branchio‐Oto‐Renal Syndrome. The Laryngoscope 2005; 115:1855-1862.
54.Ou Z, Martin DM, Bedoyan JK, Cooper ML, Chinault AC, Stankiewicz P, et al. Branchiootorenal syndrome and oculoauriculovertebral spectrum features associated with duplication of SIX1, SIX6, and OTX2 resulting from a complex chromosomal rearrangement. American Journal of Medical Genetics Part A 2008; 146:2480-2489.