Evaluation of nicotinic receptor of pedunculopontine tegmental nucleus in central cardiovascular regulation in anesthetized rat

Document Type : Original Article


1 Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran

2 Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran

3 Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran


Objective(s): Cholinergic neurons are important neurons in the Pedunculopontine tegmental nucleus (PPT). In this study, nicotinic receptor of the PPT in central cardiovascular regulation in the anesthetized rat was evaluated.
Materials and Methods: Saline, acetylcholine (Ach; doses: 90 and 150 nmol), hexamethonium (Hexa; doses: 100 and 300 nmol) and higher doses of Hexa (300 nmol) + Ach (150 nmol) microinjected into the PPT. The femoral artery was cannulated and cardiovascular responses were continuously recorded by a power lab system. After injection of drugs, peak changes of mean arterial pressure (∆MAP), systolic blood pressure (∆SBP) and heart rate (∆HR) calculated and compared with saline group.
Results: The ∆SBP and ∆MAP significantly decreased by two doses of Ach (PConclusion: These results indicate that nicotinic receptor of the PPT has an inhibitory effect on ∆HR with no significant effect on ∆MAP or ∆SBP.


Main Subjects

1. Datta S, Spoley E, Mavanji V, Patterson E. A novel role  of pedunculopontine tegmental kainate receptors: a mechanism of rapid eye movement sleep generation in the rat. Neuroscience 2002;114:157-164.
2. Carlson JD, Selden NR, Heinricher MM. Nocifensive reflex-related on-and off-cells in the pedunculopontine tegmental nucleus, cuneiform nucleus, and lateral dorsal tegmental nucleus. Brain Res 2005;1063:187-194.
3. Garcia-Rill E. The pedunculopontine nucleus. Prog Neurobiol 1991; 36:363-389.
4. Sleekier T, Inglis W, Winn P, Sahgal A. The pedunculopontine tegmental nucleus: a role in cognitive processes? Brain Res Rev 1994; 19:298-318.
5. Carlson JD, Iacono RP, Maeda G. Nociceptive excited and inhibited neurons within the pedunculopontine tegmental nucleus and cuneiform nucleus. Brain Res 2004; 1013:182-187.
6. Martinez-Gonzalez C, Bolam JP, Mena-Segovia J. Topographical organization of the pedunculopontine nucleus. Front Neuroanat 2011; 5:22.
7. Mena-Segovia J, Bolam JP, Magill PJ. Pedunculopontine nucleus and basal ganglia: distant relatives or part of the same family? Trends Neurosci 2004; 27:585-588.
8. Aravamuthan B, Muthusamy K, Stein J, Aziz T, Johansen-Berg H. Topography of cortical and subcortical connections of the human pedunculopontine and subthalamic nuclei. Neuroimage. 2007; 37:694-705.
9. Garcia-Rill E. The basal ganglia and the locomotor regions. Brain Res Rev 1986; 11:47-63.
10.    Plaha P, Gill SS. Bilateral deep brain stimulation of the pedunculopontine nucleus for Parkinson’s disease. Neuroreport 2005; 16:1883-1887.
11.    Bechara A, van der Kooy D. The tegmental pedunculopontine nucleus: a brain-stem output of the limbic system critical for the conditioned place preferences produced by morphine and amphetamine.  J Neurosci 1989; 9:3400-3409.
12.    Hamani C, Saint‐Cyr JA, Fraser J, Kaplitt M, Lozano AM. The subthalamic nucleus in the context of movement disorders. Brain 2004; 127:4-20.
13.    Semba K, Fibiger HC. Afferent connections of the laterodorsal and the pedunculopontine tegmental nuclei in the rat: A retro‐and antero‐grade transport and immunohistochemical study. J Comp Neurol 1992; 323:387-410.
14.    Topchiy I, Waxman J, Radulovacki M, Carley DW. Functional topography of respiratory, cardiovascular and pontine-wave responses to glutamate microstimulation of the pedunculopontine tegmentum of the rat. Respir Physiol Neurobiol 2010; 173:64-70.
15.    Padley JR, Kumar NN, Li Q, Nguyen TB, Pilowsky PM, Goodchild AK. Central command regulation of circulatory function mediated by descending pontine cholinergic inputs to sympathoexcitatory rostral ventrolateral medulla neurons. Circ Res 2007; 100:284-291.
16.    Shafei MN, Nikyar T, Hosseini M, Niazmand S, Paseban M. Cardiovascular effects of nitrergic system of the pedunculopontine tegmental nucleus in anesthetized rats. Iran J Basic Med Sci 2017; 20:776-782.
17.    Yasui Y, Cechetto DF, Saper CB. Evidence for a cholinergic projection from the pedunculopontine tegmental nucleus to the rostral ventrolateral medulla in the rat. Brain Res 1990; 517:19-24.
18.    Steininger TL, Rye DB, Wainer BH. Afferent projections to the cholinergic pedunculopontine tegmental nucleus and adjacent midbrain extrapyramidal area in the albino rat. I. Retrograde tracing studies. J Comp Neurol 1992; 321:515-543.
19.    Winn P. How best to consider the structure and function of the pedunculopontine tegmental nucleus: evidence from animal studies. J Neurol Sci 2006; 248:234-250.
20.    Dai YWE, Lee YH, YS Chen J, Lin YK, Hwang LL. Expression of the M3 Muscarinic Receptor on Orexin Neurons that Project to the Rostral Ventrolateral Medulla. Anat Rec 2016; 299:660-668.
21.    Dhar S, Nagy F, Mcintosh JM, Sapru H. Receptor subtypes mediating depressor responses to microinjections of nicotine into medial NTS of the rat. Am J Physiol Regul Integr Comp Physiol 2000; 279:R132-R140.
22.    Kubo T. Cholinergic mechanism and blood pressure regulation in the central nervous system. Brain Res Bull. 1998; 46:475-481.
23.    Kubo T, Taguchi K, Sawai N, Ozaki S, Hagiwara Y. Cholinergic mechanisms responsible for blood pressure regulation on sympathoexcitatory neurons in the rostral ventrolateral medulla of the rat. Brain Res Bull. 1997; 42:199-204.
24.    Decker MW, Brioni JD, Bannon AW, Arneric SP. Diversity of neuronal nicotinic acetylcholine receptors: lessons from behavior and implications for CNS therapeutics. Life Sci 1995; 56:545-570.
25.    Le Novere N, Corringer PJ, Changeux JP. The diversity of subunit composition in nAChRs: evolutionary origins, physiologic and pharmacologic consequences. J Neurobiol 2002; 53:447-456.
26.    Matsuyama S, Matsumoto A. Epibatidine induces long-term potentiation (LTP) via activation of. ALPHA. 4. BETA. 2 nicotinic acetylcholine receptors (nAChRs) in vivo in the intact mouse dentate gyrus: both. ALPHA. 7 and. ALPHA. 4. BETA. 2 nAChRs essential to nicotinic LTP. J Pharmacol Sci 2003; 93:180-187.
27.    Williams BM, Temburni MK, Levey MS, Bertrand S, Bertrand D, Jacob MH. The long internal loop of the &agr; 3 subunit targets nAChRs to subdomains within individual synapses on neurons in vivo. Nat Neurosci. 1998; 1:557-562.
28.    Barnes PJ. New concepts in the pathogenesis of bronchial hyperresponsiveness and asthma. J Allergy Clin Immunol 1989; 83:1013-1026.
29.    Warren N, Piggott M, Perry E, Burn D. Cholinergic systems in progressive supranuclear palsy. Brain. 2005; 128:239-249.
30. Aberger K, Chitravanshi V, Sapru H. Cardiovascular responses to microinjections of nicotine into the caudal ventrolateral medulla of the rat. Brain Res 2001; 892:138-146.
31.    Ferreira M, Singh A, Dretchen KL, Kellar KJ, Gillis RA. Brainstem nicotinic receptor subtypes that influence intragastric and arterial blood pressures. J Pharmacol Exp Ther 2000; 294:230-238.
32.    Gong CL, Chiu YT, Lin NN, Cheng CC, Lin SZ, Lee TF, et al. Regulation of the common carotid arterial blood flow by nicotinic receptors in the medulla of cats. Br J Pharmacol 2006; 149:206-214.
33.    Maskos U. The cholinergic mesopontine tegmentum is a relatively neglected nicotinic master modulator of the dopaminergic system: relevance to drugs of abuse and pathology. Br J Pharmacol 2008; 153: 438-445.
34.    Hatam M, Kharazmi F, Nasimi A. Vasopressin and sympathetic systems mediate the cardiovascular effects of the GABAergic system in the bed nucleus of the stria terminalis. Neurosci Res 2009; 65:347-352.
35. Paxinos GW, Watson C. The rat brain in stereotaxic coordinates. Burlington MA Elsevier Inc 2005.
36.    Shafei MN, Nasimi A. Effect of glutamate stimulation of the cuneiform nucleus on cardiovascular regulation in anesthetized rats: Role of the pontine Kolliker–Fuse nucleus. Brain Res 2011; 1385:135-143.
37.    Deuschl G, Schade-Brittinger C, Krack P, Volkmann J, Schäfer H, Bötzel K, et al. A randomized trial of deep-brain stimulation for Parkinson’s disease. N Engl J Med 2006; 355:896-908.
38.    Shafei MN, Niazmand S, Hosseini M, Daloee MH. Pharmacological study of cholinergic system on cardiovascular regulation in the cuneiform nucleus of rat. Neurosci Lett 2013; 549:12-7.
39.    Kenney C, Simpson R, Hunter C, Ondo W, Almaguer M, Davidson A, et al. Short-term and long-term safety of deep brain stimulation in the treatment of movement disorders. J Neurosurg 2007; 106:621-5.
40.    Kleiner‐Fisman G, Herzog J, Fisman DN, Tamma F, Lyons KE, Pahwa R, et al. Subthalamic nucleus deep brain stimulation: Summary and meta‐analysis of outcomes. Mov Disord. 2006; 21:S290-S304.
41.    Leonard C, Llinas R. Serotonergic and cholinergic inhibition of mesopontine cholinergic neurons controlling REM sleep: an in vitro electrophysiological study. Neuroscience 1994; 59:309-330.
42.    Takakusaki K, Kitai S. Ionic mechanisms involved in the spontaneous firing of tegmental pedunculopontine nucleus neurons of the rat. Neuroscience 1997; 78:771-794.
43.    Deolindo MV, Pelosi GG, Busnardo C, Resstel LBM, Corrêa FMA. Cardiovascular effects of acetylcholine microinjection into the ventrolateral and dorsal periaqueductal gray of rats. Brain Res 2011; 1371:74-81.
44.    Dampney R. Functional organization of central pathways regulating the cardiovascular system. Physiol Rev 1994; 74:323-364.
45.    Mori S. Integration of posture and locomotion in acute decerebrate cats and in awake, freely moving cats. Prog Neurobiol 1987; 28:161-195.
46.    Hershkowitz M, Eliash S, Cohen S. The muscarinic cholinergic receptors in the posterior hypothalamus of hypertensive and normotensive rats. Eur J Pharmacol. 1982; 86:229-236.
47.    Good CH, Bay KD, Buchanan R, Skinner RD, Garcia-Rill E. Muscarinic and nicotinic responses in the developing pedunculopontine nucleus (PPN). Brain Res 2007; 1129:147-155.