1. Zhou L-J, Ord DC, Hughes AL, Tedder TF. Structure and domain organization of the CD19 antigen of human, mouse, and guinea pig B lymphocytes. Conservation of the extensive cytoplasmic domain. J Immunol 1991;147:1424-1432.
2. Park J, editor CD19 CAR therapy for acute lymphoblastic leukemia2015: American Society of Clinical Oncology.
3. Fairfax KA, Tsantikos E, Figgett WA, Vincent FB, Quah PS, LePage M. BAFF-driven autoimmunity requires CD19 expression. J Autoimmun 2015;62:1-10.
4. Benjamini O, Jain P, Trinh L, Qiao W, Strom SS, Lerner S. Second cancers in patients with chronic lymphocytic leukemia who received frontline fludarabine, cyclophosphamide and rituximab therapy: distribution and clinical outcomes. Leuk Lymphoma. 2015;56:1643-1650.
5. Lugtenburg P, Brown PDN, Van der Holt B, D’Amore FA, Koene H, Berenschot H, editors. Randomized phase III study on the effect of early intensification of Rituximab in combination with 2-weekly CHOP chemotherapy flollowed by Rituximab or no maintenance in patients with diffuse large B-cell lymphoma: Results from a HOVON-Nordic Lymphoma Group Study. ASCO Annual Meeting; 2016.
6. Van der Kolk L, Grillo‐López A, Baars J, Hack C, Van Oers M. Complement activation plays a key role in the side‐effects of rituximab treatment. Br J Haematol 2001;115:807-811.
7. Hansen HJ, Qu Z, Goldenberg DM. Anti-CD19 antibodies. Google Patents; 2017.
8. Velasquez MP, Gottschalk S. Targeting CD19: the good, the bad, and CD81. Blood 2017;129:9-10.
9. Breton CS, Nahimana A, Aubry D, Macoin J, Moretti P, Bertschinger M. A novel anti-CD19 monoclonal antibody (GBR 401) with high killing activity against B cell malignancies. J HEMATOL ONCOL 2014;7:33.
10. Garfall AL, Maus MV, Hwang W-T, Lacey SF, Mahnke YD, Melenhorst JJ. Chimeric antigen receptor T cells against CD19 for multiple myeloma. N Engl J Med. 2015;373(11):1040-7.
11. Katz B-Z, Herishanu Y. Therapeutic targeting of CD19 in hematological malignancies: past, present, future and beyond. Leuk Lymphoma 2014;55:999-1006.
12. De Meyer T, Muyldermans S, Depicker A. Nanobody-based products as research and diagnostic tools. Trends Biotechnol. 2014;32:263-270.
13. Honda T, Akahori Y, Kurosawa Y. Methods of constructing camel antibody libraries. Google Patents; 2008.
14. Harmsen M, De Haard H. Properties, production, and applications of camelid single-domain antibody fragments. Appl Microbiol Biotechnol. 2007;77:13-22.
15. Könning D, Zielonka S, Grzeschik J, Empting M, Valldorf B, Krah S. Camelid and shark single domain antibodies: structural features and therapeutic potential. Curr Opin Struct Biol. 2017;45:10-6.
16. Wang Y, Fan Z, Shao L, Kong X, Hou X, Tian D. Nanobody-derived nanobiotechnology tool kits for diverse biomedical and biotechnology applications. Int J Nanomedicine. 2016;11:3287.
17. van Lith SA, Roodink I, Verhoeff JJ, Mäkinen PI, Lappalainen JP, Ylä-Herttuala S. In vivo phage display screening for tumor vascular targets in glioblastoma identifies a llama nanobody against dynactin-1-p150 Glued. Oncotarget. 2016;7:71594-71607.
18. Veugelen S, Dewilde M, De Strooper B, Chávez-Gutiérrez L. Chapter Three-Screening and Characterization Strategies for Nanobodies Targeting Membrane Proteins. Methods Enzymol 2017;584:59-97.
19. Sharifzadeh Z, Rahbarizadeh F, Shokrgozar MA, Ahmadvand D, Mahboudi F, Jamnani FR. Development of oligoclonal nanobodies for targeting the tumor-associated glycoprotein 72 antigen. Mol Biotechnol 2013;54:590-601.
20. Ahmadvand D, Rasaee MJ, Rahbarizadeh F, Kontermann RE, Sheikholislami F. Cell selection and characterization of a novel human endothelial cell specific nanobody. Mol Immunol 2009;46:1814-1823.
21. Rahbarizadeh F, Rasaee MJ, Forouzandeh M, Allameh A-A. Over expression of anti-MUC1 single-domain antibody fragments in the yeast Pichia pastoris. Mol Immunol. 2006;43:426-435.
22. Hoogenboom HR, Lutgerink JT, Pelsers MM, Rousch MJ, Coote J, van Neer N Selection‐dominant and nonaccessible epitopes on cell‐surface receptors revealed by cell‐panning with a large phage antibody library. Eur J Biochem. 1999;260:774-784.
23. Jamnani FR, Rahbarizadeh F, Shokrgozar MA, Ahmadvand D, Mahboudi F, Sharifzadeh Z. Targeting high affinity and epitope-distinct oligoclonal nanobodies to HER2 over-expressing tumor cells. Exp Cell Res. 2012;318(10):1112-24.
24. Desper R, Gascuel O. Theoretical foundation of the balanced minimum evolution method of phylogenetic inference and its relationship to weighted least-squares tree fitting. Mol Biol Evol. 2004;21:587-598.
25. Gazarian T, Selisko B, Hérion P, Gazarian K. Isolation and structure–functional characterization of phage display library-derived mimotopes of noxiustoxin, a neurotoxin of the scorpion Centruroides noxius Hoffmann. Mol Immunol. 2000;37:755-766.
26. Kay BK, Winter J, McCafferty J. Phage display of peptides and proteins: a laboratory manual: Academic Press; 1996.
27. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976;72:248-254.
28. Dumoulin M, Conrath K, Van Meirhaeghe A, Meersman F, Heremans K, Frenken LG. Single‐domain antibody fragments with high conformational stability. Protein Sci 2002;11:500-515.
29. Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. nature. 1970;227:680-685.
30. Engvall E. Enzyme immunoassay ELISA and EMIT. Methods Enzymol. 1980;70:419-439.
31. Rameh LE, Arvidsson A-k, Carraway KL, Couvillon AD, Rathbun G, Crompton A. A comparative analysis of the phosphoinositide binding specificity of pleckstrin homology domains. J Biol Chem. 1997;272:22059-22066.
32. Ghassabeh GH, Saerens D, Muyldermans S. Isolation of antigen-specific nanobodies. Antibody engineering 2010:251-266.
33. Beatty JD, Beatty BG, Vlahos WG. Measurement of monoclonal antibody affinity by non-competitive enzyme immunoassay. J Immunol Methods 1987;100:173-179.
34. Loken MR, Shah VO, Dattilio KL, Civin CI. Flowcytometric analysis of human bone marrow. II. Normal B lymphocyte development. Blood. 1987;70:1316-1324.
35. Nelson AL, Dhimolea E, Reichert JM. Development trends for human monoclonal antibody therapeutics. Nat Rev Drug Discov. 2010;9:767-774.
36. Morrow KJ, Liu C. Biosimilars of Monoclonal Antibodies: A Practical Guide to Manufacturing, Preclinical and Clinical Development: John Wiley & Sons; 2016.
37. Clackson T, Hoogenboom HR. Making antibody fragments using phage display libraries. Nature 1991;352:624.
38. Muyldermans S, Baral T, Retamozzo VC, De Baetselier P, De Genst E, Kinne J. Camelid immunoglobulins and nanobody technology. Vet Immunol Immunopathol 2009;128:178-183.
39. Van Audenhove I, Gettemans J. Nanobodies as versatile tools to understand, diagnose, visualize and treat cancer. EBioMedicine 2016;8:40-48.
40. Farajpour Z, Rahbarizadeh F, Kazemi B, Ahmadvand D. A nanobody directed to a functional epitope on VEGF, as a novel strategy for cancer treatment. Biochem Biophys Res Commun 2014;446(1):132-136.
41. Drive R, entitled DDEIaptsaora, B-Lymphocyte DoSCNVfCI-toH, disclose. TmhnbpainucfpeWhncoit, Co-author:, et al. Evaluation of a nanobody phage display library constructed from a Brucella-immunised camel. Vet Immunol Immunopathol. 2011;142:49-56.
42. Czuczman M, Grillo-Lopez A, White C, Saleh M, Gordon L, LoBuglio A. Treatment of patients with low-grade B-cell lymphoma with the combination of chimeric anti-CD20 monoclonal antibody and CHOP chemotherapy. J Clin Oncol 1999;17:268-276.
43. Reff ME, Carner K, Chambers K, Chinn P, Leonard J, Raab R. Depletion of B cells in vivo by a chimeric mouse human monoclonal antibody to CD20. Blood. 1994;83:435-445.
44. Schwemmlein M, Stieglmaier J, Kellner C, Peipp M, Saul D, Oduncu F, et al. A CD19-specific single-chain immunotoxin mediates potent apoptosis of B-lineage leukemic cells. Leukemia. 2007;21:1405-1412.
45. Hammer O, editor CD19 as an attractive target for antibody-based therapy. MAbs; 2012: Taylor & Francis.
46. Holliger P, Hudson PJ. Engineered antibody fragments and the rise of single domains. Nat Biotechnol 2005;23:1126-1136.
47. Adams GP, Schier R, McCall AM, Simmons HH, Horak EM, Alpaugh RK. High affinity restricts the localization and tumor penetration of single-chain fv antibody molecules. Cancer Res 2001;61:4750-4755.
48. Henderson A, Ripley S, Heller M, Kieff E. Chromosome site for Epstein-Barr virus DNA in a Burkitt tumor cell line and in lymphocytes growth-transformed in vitro. Proc Natl Acad Sci. 1983;80:1987-1991.
49. Desmyterl A, Transuei TR, Ghahroudil MA, Thil M-HD, Poortmans F, Hamersz R. Crystal structure of a camel single—domain VH antibody fragment in complex. Nat Struct Biol 1996;3:803-811.
50. Vu KB, Ghahroudi MA, Wyns L, Muyldermans S. Comparison of llama VH sequences from conventional and heavy chain antibodies. Mol Immunol 1997;34:1121-1131.