1. Labeur MS, Roters B, Pers B, Mehling A, Luger TA, Schwarz T, et al 1999. Generation of tumor immunity by bone marrow-derived dendritic cells correlates with dendritic cell maturation stage. J Immunol 162:168-175.
2. Sozzani S, Allavena P, D’Amico G, Luini W, Bianchi G, Kataura M, et al 1998. Cutting edge: differential regulation of chemokine receptors during dendritic cell maturation: a model for their trafficking properties. J Immunol 161:1083-1086.
3. Mellman I, Steinman RM 2001. Dendritic cells: specialized and regulated antigen processing machines. Cell 106:255-258.
4. Copland MJ, Baird MA, Rades T, McKenzie JL, Becker B, Reck F, et al 2003. Liposomal delivery of antigen to human dendritic cells. Vaccine 21:883-890.
5. Alving CR 1991. Liposomes as carriers of antigens and adjuvants. J Immunol Methods 140:1-13.
6. Schwendener RA 2014. Liposomes as vaccine delivery systems: a review of the recent advances. Ther Adv Vaccines 2:159-182.
7. Watson DS, Endsley AN, Huang L 2012. Design considerations for liposomal vaccines: influence of formulation parameters on antibody and cell-mediated immune responses to liposome associated antigens. Vaccine 30:2256-2272.
8. Ravindran R, Maji M, Ali N 2011. Vaccination with liposomal leishmanial antigens adjuvanted with monophosphoryl lipid–trehalose dicorynomycolate (MPL-TDM) confers long-term protection against visceral leishmaniasis through a human administrable route. Mol Pharm 9:59-70.
9. Brewer JM, Tetley L, Richmond J, Liew FY, Alexander J 1998. Lipid vesicle size determines the Th1 or Th2 response to entrapped antigen. J Immunol 161:4000-4007.
10. Christensen D, Korsholm KS, Rosenkrands I, Lindenstrøm T, Andersen P, Agger EM 2007. Cationic liposomes as vaccine adjuvants. Expert Rev Vaccines 6:785-796.
11. Soema PC, Willems G-J, Jiskoot W, Amorij J-P, Kersten GF 2015. Predicting the influence of liposomal lipid composition on liposome size, zeta potential and liposome-induced dendritic cell maturation using a design of experiments approach. Eur J Pharm Biopharm 94:427-435.
12. Vangasseri DP, Cui Z, Chen W, Hokey DA, Falo Jr LD, Huang L 2006. Immunostimulation of dendritic cells by cationic liposomes. Mol Membr Biol 23:385-395.
13. Cunningham AC 2002. Parasitic adaptive mechanisms in infection by Leishmania. Exp Mol Pathol 72:132-141.
14. Sacks D, Noben-Trauth N 2002. The immunology of susceptibility and resistance to Leishmania major in mice. Nat Rev Immunol 2:845-858.
15. Silvestre R, Cordeiro-da-Silva A, Ouaissi A 2008. Live attenuated Leishmania vaccines: a potential strategic alternative. Arch Immunol Ther Exp (Warsz) 56:123-126.
16. Rafati seyedi yazdi s, Couty-jouve s, Alimohamadian mh, Dowlati y 1997. Evaluation of cellular immune responses to amastigote soluble leishmania major antigens in recovered cases of cutaneous leishmaniasis. Med J Islam Repub Iran 11:33-38.
17. Firouzmand H, Badiee A, Khamesipour A, Shargh VH, Alavizadeh SH, Abbasi A, et al 2013. Induction of protection against leishmaniasis in susceptible BALB/c mice using simple DOTAP cationic nanoliposomes containing soluble Leishmania antigen (SLA). Acta Trop 128:528-535.
18. Barbi J, Brombacher F, Satoskar AR 2008. T cells from Leishmania major-susceptible BALB/c mice have a defect in efficiently up-regulating CXCR3 upon activation. J Immunol 181:4613-4620.
19. Scott P 1991. IFN-gamma modulates the early development of Th1 and Th2 responses in a murine model of cutaneous leishmaniasis. J Immunol 147:3149-3155.
20. Lohoff M, Sommer F, Solbach W, Röllinghoff M 1989. Coexistence of Antigen-Specific T H 1 and T H 2 Cells in Genetically Susceptible BALB/c Mice Infected with Leishmania major. Immunobiology 179:412-421.
21. Scott P, Novais FO 2016. Cutaneous leishmaniasis: immune responses in protection and pathogenesis. Nat Rev Immunol 16:581-592.
22. Stamatatos L, Leventis R, Zuckermann MJ, Silvius JR 1988. Interactions of cationic lipid vesicles with negatively charged phospholipid vesicles and biological membranes. Biochemistry 27:3917-3925.
23. Maji M, Mazumder S, Bhattacharya S, Choudhury ST, Sabur A, Shadab M, et al 2016. A lipid based antigen delivery system efficiently facilitates MHC class-I antigen presentation in dendritic cells to stimulate CD8+ T cells. Sci Rep 6:27206.
24. Scott P, Pearce E, Natovitz P, Sher A 1987. Vaccination against cutaneous leishmaniasis in a murine model. I. Induction of protective immunity with a soluble extract of promastigotes. J Immunol 139:221-227.
25. Torchilin V, Weissig V. 2003. Liposomes: a practical approach. ed.: Oxford University Press.
26. Torchilin VP 2005. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 4:145-160.
27. Nobs L, Buchegger F, Gurny R, Allémann E 2004. Current methods for attaching targeting ligands to liposomes and nanoparticles. J Pharm Sci 93:1980-1992.
28. Quer CB, Elsharkawy A, Romeijn S, Kros A, Jiskoot W 2012. Cationic liposomes as adjuvants for influenza hemagglutinin: more than charge alone. Eur J Pharm Biopharm 81:294-302.
29. Henriksen-Lacey M, Bramwell VW, Christensen D, Agger E-M, Andersen P, Perrie Y 2010. Liposomes based on dimethyldioctadecylammonium promote a depot effect and enhance immunogenicity of soluble antigen. J Control Release 142:180-186.
30. Brgles M, Habjanec L, Halassy B, Tomašić J 2009. Liposome fusogenicity and entrapment efficiency of antigen determine the Th1/Th2 bias of antigen-specific immune response. Vaccine 27:5435-5442.
31. Copland MJ, Rades T, Davies NM, Baird MA 2005. Lipid based particulate formulations for the delivery of antigen. Immunol Cell Biol 83:97-105.
32. Heravi Shargh V, Jaafari MR, Khamesipour A, Jaafari I, Jalali SA, Abbasi A, et al. 2012. Liposomal SLA co-incorporated with PO CpG ODNs or PS CpG ODNs induce the same protection against the murine model of leishmaniasis. Vaccine 30:3957-3964.
33. Antimisiaris SG, Jayasekera P, Gregoriadis G 1993. Liposomes as vaccine carriers: incorporation of soluble and particulate antigens in giant vesicles. J Immunol Methods 166:271-280.
34. Moghimi SM, Patel HM 1988. Tissue specific opsonins for phagocytic cells and their different affinity for cholesterol‐rich liposomes. FEBS lett 233:143-147.
35. Kersten GF, Crommelin DJ 1995. Liposomes and ISCOMS as vaccine formulations. Biochim Biophys Acta 1241:117-138.
36. Mazumdar T, Anam K, Ali N 2005. Influence of phospholipid composition on the adjuvanticity and protective efficacy of liposome-encapsulated Leishmania donovani antigens. J Parasitol 91:269-274.
37. Foged C, Arigita C, Sundblad A, Jiskoot W, Storm G, Frokjaer S 2004. Interaction of dendritic cells with antigen-containing liposomes: effect of bilayer composition. Vaccine 22:1903-1913.
38. Noben-Trauth N, Kropf P, Muller I 1996. Susceptibility to Leishmania major infection in interleukin-4-deficient mice. Science 271:987.
39. Scharton-Kersten T, Scott P 1995. The role of the innate immune response in Th1 cell development following Leishmania major infection. J Leukoc Biol 57:515-522.
40. Ma Y, Zhuang Y, Xie X, Wang C, Wang F, Zhou D et al 2011. The role of surface charge density in cationic liposome-promoted dendritic cell maturation and vaccine-induced immune responses. Nanoscale 3:2307-2314.
41. Banchereau J, Steinman RM 1998. Dendritic cells and the control of immunity. Nature 392:245-252.
42. Lutz MB, Schuler G 2002. Immature, semi-mature and fully mature dendritic cells: which signals induce tolerance or immunity? Trends Immunol 23:445-449.
43. Mahnke K, Qian Y, Knop J, Enk AH 2003. Induction of CD4+/CD25+ regulatory T cells by targeting of antigens to immature dendritic cells. Blood 101:4862-4869.
44. Dieu M-C, Vanbervliet B, Vicari A, Bridon J-M, Oldham E, Aït-Yahia S, et al. 1998. Selective recruitment of immature and mature dendritic cells by distinct chemokines expressed in different anatomic sites. J Exp Med 188:373-386.
45. McLellan AD, Starling GC, Williams LA, Hock BD, Hart DN 1995. Activation of human peripheral blood dendritic cells induces the CD86 co‐stimulatory molecule. Eur J Immunol 25:2064-2068.
46. Dzionek A, Fuchs A, Schmidt P, Cremer S, Zysk M, Miltenyi S, et al. 2000. BDCA-2, BDCA-3, and BDCA-4: three markers for distinct subsets of dendritic cells in human peripheral blood. J Immunol 165:6037-6046.
47. Tsuji S, Matsumoto M, Takeuchi O, Akira S, Azuma I, Hayashi A, et al. 2000. Maturation of human dendritic cells by cell wall skeleton of Mycobacterium bovis bacillus Calmette-Guerin: involvement of toll-like receptors. Infect Immun 68:6883-6890.
48. Shortman K, Liu Y-J 2002. Mouse and human dendritic cell subtypes. Nat Rev Immunol 2:151-161.
49. Singh-Jasuja H, Thiolat A, Ribon M, Boissier M-C, Bessis N, Rammensee H-G, et al. 2013. The mouse dendritic cell marker CD11c is down-regulated upon cell activation through Toll-like receptor triggering. Immunobiology 218:28-39.
50. Lonez C, Vandenbranden M, Ruysschaert J-M 2008. Cationic liposomal lipids: from gene carriers to cell signaling. Prog Lipid Res 47:340-347.
51. Tanaka T, Legat A, Adam E, Steuve J, Gatot JS, Vandenbranden M, et al. 2008. DiC14‐amidine cationic liposomes stimulate myeloid dendritic cells through toll‐like receptor 4. Eur J Immunol 38:1351-1357.